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Abstract. Grammatical Error Correction (GEC) is an important task
in natural language processing. In this paper, we introduce our system
on NLPCC 2018 Shared Task 2 Grammatical Error Correction. The task
is to detect and correct grammatical errors that occurred in Chinese
essays written by non-native speakers of Mandarin Chinese. Our system
is mainly based on the convolutional sequence-to-sequence model. We
regard GEC as a translation task from the language of “bad” Chinese
to the language of “good” Chinese. We describe the building process of
the model in details. On the test data of NLPCC 2018 Shared Task 2,
our system achieves the best precision score, and the F0.5 score is 29.02.
Our final results ranked third among the participants.
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1 Introduction

The rapid development in China attracts people from all over the world to learn
Chinese. Chinese is a historically influential and versatile language. Chinese is
unique in many aspects as opposed to English and other languages. One of the
distinction worth mentioning is its lack of verb conjugations and plural suffixes.
Besides, the sentence expression is very flexible, which means that the rearrange-
ment of word order in various ways may not impact on the sentence meaning.
While handling grammatical complexity comes very naturally to native Chinese
speaker, to be proficient and competent is very challenging to CSL (Chinese as
Second Language) learners. Therefore, it is practical to develop a system auto-
matically correcting grammatical errors, which is the goal of the NLPCC 2018
Shared Task 2.
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English grammar correction has been studied for many years with great
progress. In particular, after Ng et al. [13] organize the CONLL-2013 shared task,
a large number of methods based on statistics and neural networks emerge, which
greatly promote the study of English grammar error correction. Chollampatt
et al. [1] propose the phrase-based statistical machine translation (SMT) app-
roach, in which GEC is firstly treated as a translation task. By training the
model to “translate” the “bad” English into the “good” English, they carry
out very promising results. Following the previous work, several neural encoder-
decoder approaches have been put forward for this task. Chollampatt et al.
[2] firstly employ a convolutional encoder-decoder model that achieved good
performance for GEC. Among those, Junczys-Dowmunt et al. [9] demonstrate
parallels between neural GEC and low-resource neural MT. They successfully
adopt several methods from low-resource MT to neural GEC, and achieve the
state-of-the-art results on this task.

While English Grammatical Error Correction is being intensively studied for
years, the same task on Chinese is poorly focused until very recently. In 2014, Yu
et al. [10] organize a Shared Task on Grammatical Error Diagnosis (GED) for
Learning Chinese as a Foreign Language (CFL). The goal of this shared task is to
develop computer-assisting tools for GED of several kinds (i.e., redundant word,
missing word, word disorder, and word selection). The task had led researchers to
focus on Chinese grammar errors correction in computational linguistics. Until
2017, Rao et al. [14] organize the IJCNLP 2017 Shared Tasks on CGED, where
the task still solely concentrates on the detection of the grammatical errors
rather than the automatic generation of corrections. The NLPCC 2018 Task 2
gives NLP researchers an opportunity to develop the Chinese grammatical error
correction system.

This paper is organized as follows: Sect. 2 describes the GEC shared task.
Section 3 illustrates the details of our structure. In Sect. 4, we present our exper-
iment in details, including the data preprocessing and results. In Sect. 5, we
introduce some related work both in English and in Chinese. Last but not least,
the conclusion and a prospect of future work are given in Sect. 6.

2 Grammatical Error Correction

With the expanding influence of China, learning Mandarin Chinese has grown in
popularity around the world. Even though the study of second language learning
has started many years ago, the research of CSL still has a long way to go.

The goal of the NLPCC 2018 Shared Task 2 is to evaluate algorithms and
systems for the automatic detection and correction of grammatical errors from
second language learners of Chinese. Given a Chinese sentence, a GEC system is
expected to correct four types of grammatical errors, including redundant words
(R), missing words (M), bad word selection (S) and disorder words (W).

A grammatical error correction system is evaluated by how well its proposed
corrections or edits match the gold-standard edits. A sentence is first segmented
before evaluation is carried out on a set of sentences. The metrics measured
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at the testing stage are: Precision, Recall and F0.5. Let gi is the set of gold-
standard edits for sentence, and ei is the set of system edits for sentence. The
measurements are defined as follows:

P =
∑n

i=1 |ei∩gi|∑n
i=1 |ei| , (1)

R =
∑n

i=1 |ei∪gi|∑n
i=1 |gi| , (2)

F0.5 = (1+0.52)×R×P
R+0.52×P , (3)

where the intersection between ei and gi is defined as:

ei ∪ gi = {e ∈ ei|∃g ∈ gi ,match(e, g)}. (4)

We choose F0.5 which emphasizes precision twice as much as recall as our F-
measure for that when a grammar checker is put into actual use, the accuracy of
its corrections is profoundly valued in order to gain users’ acceptance. Negligence
in offering a correction is not as bad as giving a wrong one. The NLPCC 2018
Shared Task 2 use the MaxMatch (M2) scorer1 [4] as the official scorer. The M2

scorer efficiently searches for a set of system edits that maximally matches the
set of gold-standard edits specified by an annotator.

3 Methodology

Sequence-to-sequence model has been proven to be powerful in many tasks such
as machine translation [12], speech recognition [3] and text summarization [15].
Our model for the task of GEC, inspired by the work of Gehring et al. [6], is
based on a fully convolutional encoder-decoder architecture with multiple layers
of convolutions and attention mechanisms. Most grammatical errors are often
localized and dependent more heavily on the nearby words. Therefore, we take
advantage of the convolutional neural networks (CNNs), as it can capture local
context more effectively than RNNs by performing on smaller windows over the
word sequences. Wider contexts and interactions between distant words can also
be captured by a multilayer hierarchical structure of convolutions. Moreover, an
attention mechanism that assigns weights over the source words based on their
relevance is used when predicting the target word. One benefit of our model is
that only a fixed number of nonlinear operations are implemented on the input
disregarding its length, whereas when using RNNs, the number of nonlinear
operations is proportional to the length of the input, diminishing the effects of
distant words. In the following section, we will describe our model in details.

3.1 Convolutional Sequence to Sequence Model

We embed input source sentence S given as a sequence of m source words
s1, · · · , sm then lookup embedding vector from embedding matrix for each word
1 http://www.comp.nus.edu.sg/∼nlp/software.html.

http://www.comp.nus.edu.sg/~nlp/software.html


404 H. Ren et al.

Layer6

Layer1

Attention

Layer1

Layer6

<p> <p> <s>

<p> <p></s>

Encoder

Decoder











o1
o2
o3

ei

h0
i

f1
i

h1
i

Fig. 1. The architectures of convolutional sequence-to-sequence model.

si as wsi ∈ Rd. We also equip our model with a sense of order by embedding the
absolute position of input elements p = (p1, · · · , pm) where pj ∈ Rd. Both are
combined to obtain input sentence representations s = (w1 + p1, · · · , wm + pm).
We proceed similarly for output elements that were already generated by the
decoder network to yield output element representations that are being fed back
into the decoder network g = (g1, · · · , gn). Position embeddings are useful in our
architecture since they give our model a sense of which portion of the sequence
in the input or output it is currently dealing with.

In this section, we will describe our model in details. The encoder and decoder
are made up of L layers each, share a simple block structure that computes inter-
mediate states based on a fixed number of input elements. Each block contains
a one dimensional convolution and a non-linearity. The goal of this framework
is to estimate the conditional probability p(yi+1|y1, · · · , yi, S), where S is an
input sentence and {y1, y2, · · · , ym} is the corresponding output sequence. The
architecture of the network is indicated in Fig. 1.
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Encoder. Pass the source token embeddings, s1, · · · , sm, over the linear layer to
get the input vectors of the first encoding layer, h0

1, · · · , h0
m, where h0

i ∈ Rd and
h is the input and output dimension of all encoder and decoder layers. In the first
encoder layer, convolution kernel is parameterized as W ∈ R(2d×kd), bw ∈ R2d

and takes as input X ∈ Rk×d which is a concatenation of k input elements
embedded in d dimensions and maps them to a single output element Y ∈ R2d

that has twice the dimensionality of the input elements. Paddings (denoted by
in Fig. 1) are added at the beginning and end of the source sentence to retain
the same number of output vectors as the source tokens after the convolution
operations.

Y = [A B] ∈ R2d (5)

This is followed by a non-linearity using gated linear units (GLU) [5]:

GLU(Y ) = A ⊗ σ(B) (6)

where A,B ∈ Rd are the inputs to the non-linearity, ⊗ and σ represent element-
wise multiplication and sigmoid activation functions, respectively. To enable deep
convolutional networks, we add residual connections from the input vectors of
each encoder layer to the output of the layer. The output vectors of the 1th
encoder layer are given by,

hl
i = GLU(Y ) + hl−1

i i = 1, · · · ,m (7)

Each output vector of the final encoder layer, hL
i ∈ Rh, is linearly mapped to

get the encoder output vector, ei ∈ Rd, using weights We ∈ Rd×h and biases
be ∈ Rd:

ei = Weh
L
i + be i = 1, · · · ,m (8)

Decoder. Each decoder layer has its own multi-step attention. To compute the
attention, we combine the current decoder state yln ∈ Rh with an embedding of
the previous target element tn−1:

zln = Wzy
l
n + bz + tn−1 Wz ∈ Rd×h bz ∈ Rd (9)

The attention weights αl
n,i are computed by a dot product of the encoder output

vectors e1, · · · , em with zln and normalized by a softmax:

αl
n,i =

exp(eTi zln)∑m
k=1 exp(e

T
k z

l
n)

i = 1, · · · ,m (10)

The addition of the source embeddings helps to better retain information about
the source tokens. The conditional source context vector xl

n is a weighted sum
of the encoder outputs as well as the source embeddings:

xl
n =

m∑

i=1

αl
n,i(ei + si) (11)
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The context vector xl
n is then linearly mapped to cln ∈ Rh. The output vector

of the lth decoder layer, gln, is the summation of cln, yln, and the previous layer’s
output vector gl−1

n .

gln = yln + cln + gl−1
n (12)

The final decoder layer output vector gLn is linearly mapped to dn ∈ Rd. Dropout
[18] is applied at the decoder outputs, embeddings, and before every encoder and
decoder layer. Finally, we compute a distribution over the T possible next target
elements yi+1 by transforming the top decoder output dn via a linear layer with
weights Wo and bias bo:

p(yi+1|y1, · · · , yi, S) = softmax(Wodn + bo) ∈ RT (13)

4 Experimental Setup

4.1 Data

We conduct our experiment on the dataset of NLPCC 2018 Evaluation Task
2, which is collected from Lang-8 website2, a multilingual language learning
platform providing language exchange Social Networking Service, with native
speakers from more than 190 countries and 90 languages.

The full dataset, containing 1,220,069 sentence pairs, has no validation set.
We randomly split the whole dataset into two parts: a validation set with 5k
sentence pairs that have inconsistency between the source sentence and the target
sentence and a training set with all the remaining 1,215,876 sentence pairs. In
our experiments, we found that adding the sentence pairs that are identical
on both sides could improve the result. Therefore we add all sentences with no
grammatical error into the training set. The test data contains 2k sentence pairs.
The statistic of the dataset shows in Table 1.

Table 1. Statistics of training, validation and test data. Unchanged refers to unchanged
sentence pair. Changed refers to changed sentence pair. Src refers to source wrong
sentences. Trg refers to target correct sentences.

Unchanged Changed Words (Jieba) Characters

Training Src 123,500 1,091,569 15,532,349 25,102,706

Training Trg 123,500 1,091,569 16,261,275 26,318,823

Validation Src – 5,000 63,974 103,543

Validation Trg – 5,000 67,342 108,965

Test Src – 2,000 37,420 61,314

2 http://lang-8.com/.

http://lang-8.com/
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Table 2. Examples of two word segmentation methods.

4.2 Data Preparation

Word Segmentation. Since the evaluation criteria is based on the word-level,
we firstly segment the large corpus using jieba3 toolkit, which is a Python module
for Chinese word segmentation. As is well known, Chinese word segmentation
constantly faces the difficulty of multi-granularities. Remarkably, jieba deals with
this kind of problem with flying colors. By comparing the experimental results
of word segmentation with other word segmentation tools, we found that using
jieba can achieve superior performance.

Subword. The subword method is initially proposed by Byte Pair Encoding
(BPE) which is an effective data compression technique. Sennrich et al. [17]
adopted BPE for word segmentation in neural machine translation (NMT) task
which helps to solve the problem of rare and unknown words. The task of gram-
matical error correction has the similar problem like out-of-vocabulary (OOV)
words in the summary generation. Hence, we apply this BPE algorithm to our
task, which splits rare words into multiple frequent subwords. The results of the
two segmentation methods are showed in Table 2. In our experiments, the use of
BPE algorithm can greatly enhance the performance of the model. For detailed
comparison results, see Sect. 4.3.

Word Embeddings. Word representations learned from large corpus have
shown to be beneficial in many NLP tasks, such as part-of-speech tagging, depen-
dency parsing and machine translation. We initialize the word embeddings for
the source and target words with pre-trained word embeddings learned from a
unlabeled large corpors. Word segmented by jieba tool, and rare words in this
Chinese corpus are split into subword units by Byte Pair Encoding algorithm
as we use similar preprocessing for the training dataset that is used to train the
network. We use the structured-skipngram model in Wang2Vec tool [11] to train
word vectors, which can solve syntax problems well and have information about
the words order. In our experiments, the use of pre-trained word embedding
can greatly enhance the performance of the model than initializing the network
randomly. For detailed comparison results, see Sect. 4.3.

4.3 Experiment Results

We adopt the widely used MaxMatch Scorer toolkit for evaluation. Table 3 shows
the results. Our basic model (CS2S) with no use of any additional knowledge
3 https://github.com/fxsjy/jieba.

https://github.com/fxsjy/jieba
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or strategy achieves 18.11 in F0.5. The F0.5 score increase to 20.11 with the
utilization of pre-trained word embedding. By adapting the BPE algorithm to
the preparation of the dataset, the performance boosts by 9.69 in F0.5 (from
18.11 to 27.80). The results are consistent with our intuition that the BPE is
supportive to the seq2seq model by upgrading its ability to generate unknown
words.

Led by the previous experiments, we equip our model with both pre-trained
embedding and BPE algorithm (CS2S+BPE+Emb). This model achieves 29.02
in F0.5. Last but not least, we initialize the parameters of the fully equipped
model with 4 different seeds. By ensembling the 4 models saved with different
initializations, our approach achieves an F0.5 score of 30.57, surpassing the best
published result of 29.91 in F0.5 (TeamID is Fighter Plane) previously. Due to
time suppress, we couldn’t submit the results of the ensembled model.

Compared to English GEC, the best F0.5 score we gain is an unsatisfying
30.57. To some extent, it lies on the scale of task and the deficiency of training
data. So there is much to be explored for the task of Chinese GEC.

Table 3. Results on test dataset. +BPE refers to using byte pair encoding algorithm
to preprocess data. +Emb indicates of using pre-trained embedding. Ensemble refers
to merging results of 4 models with different initialization.

System P R F0.5

CS2S 21.28 11.36 18.11

CS2S+Emb 23.22 13.10 20.11

CS2S+BPE 40.27 12.90 27.80

CS2S+BPE+Emb 41.73 13.08 29.02

CS2S+BPE+Emb (ensemble) 47.63 12.56 30.57

5 Related Works

Grammatical Error Detection and Correction in CONLL-2013 and CONLL-
2014 shared Task attracted a lot of English NLP researchers. Many different
approaches were proposed by those participants, e.g. hand-crafted rules, statis-
tical model, translation model and language model.

Statistical machine translation [8] has achieved good results, which can
correct various types of errors and complex error patterns. However, SMT-
based systems suffer from limited generalization capabilities compared to neural
approaches and are unable to access longer source and target contexts effec-
tively. To address these issues, several seq2seq approaches relying on RNNs were
proposed for GEC.

At present, encoder-decoder frameworks are widely used for tasks like
machine translation. Yuan et al. [19] first applied a popular neural machine
translation model, RNNSearch. Ji et al. [7] proposed a hybrid word-character
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model based on the hybrid machine translation model, by adding nested levels
of attention at the word and character level. More recently, Schmaltz et al. [16]
used a word-level bidirectional LSTM network trained on Lang-8 and NUCLE
with edit operations (insertions, deletions, and substitutions) marked with spe-
cial tags in the target sentences.

More recently, Gehring et al. [6] propose an architecture for sequence to
sequence modeling that is entirely convolutional. The model is equipped with
gated linear units and residual connections, and also use attention in every
decoder layer and demonstrate that each attention layer only adds a negligi-
ble amount of overhead. It performs well on some published dataset, because
convolutional networks do not depend on the computations of the previous time
step and therefore allow parallelization over every element in a sequence, so
training and decoding speed is faster.

Due to the similarity between MT and GEC illustrated above, an encoder-
decoder model can also be employed for the latter, where the encoder network
is used to encode the potentially erroneous source sentence in vector space and
a decoder network generates the corrected output sentence by attending to the
output of the encoder stack.

6 Conclusion and Future Work

This paper describes our system in the NLPCC 2018 Shared Task 2 for GEC. We
explored a seq2seq model based entirely on convolutional neural network. The
application of BPE-based algorithm to split rare words into multiple frequent
subwords makes the GEC model more capable of handling OOV problem. We
achieved highest precision scores and F0.5 score is 30.57.

At this stage, we believe the task is far from solved. Lots of improvements
can be made to our current model. In the future, we will continue to work on this
problem. Possible future directions include combining grammatical error correc-
tion with other related multi-task models, adding more features to the model
and adapting pre-trained language model. Aside from the model architecture,
due to the flexibility and intricacy of Chinese grammar, how to evaluate the
automatic grammatical correction also remains a big challenge. In our future
work, we will investigate better measurements and criteria for evaluation. Our
code is released at https://github.com/blcu-nlp/NLPCC 2018 TASK2 GEC.
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