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Abstract

This paper introduces a novel crowdsourcing worker selection algorithm, enhancing annotation
quality and reducing costs. Unlike previous studies targeting simpler tasks, this study con-
tends with the complexities of label interdependencies in sequence labeling. The proposed
algorithm utilizes a Combinatorial Multi-Armed Bandit (CMAB) approach for worker selec-
tion, and a cost-effective human feedback mechanism. The challenge of dealing with imbal-
anced and small-scale datasets, which hinders offline simulation of worker selection, is tack-
led using an innovative data augmentation method termed shifting, expanding, and shrink-
ing (SES). Rigorous testing on CoNLL 2003 NER and Chinese OEI datasets showcased the
algorithm’s efficiency, with an increase in F1 score up to 100.04% of the expert-only base-
line, alongside cost savings up to 65.97%. The paper also encompasses a dataset-independent
test emulating annotation evaluation through a Bernoulli distribution, which still led to an
impressive 97.56% F1 score of the expert baseline and 59.88% cost savings. Furthermore,
our approach can be seamlessly integrated into Reinforcement Learning from Human Feed-
back (RLHF) systems, offering a cost-effective solution for obtaining human feedback. All re-
sources, including source code and datasets, are available to the broader research community at
https://github.com/blcuicall/nlp-crowdsourcing.

1 Introduction

Crowdsourcing, the practice of obtaining labeled data from a multitude of contributors (Howe, 2006),
has emerged as a pivotal tool in data collection for deep learning models. It offers a cost-effective alter-
native to expert labeling, making it especially valuable in today’s data-driven research landscape (Nowak
and Rüger, 2010). While its application spans various domains, from image labeling to text classifica-
tion (Venanzi et al., 2014), this paper narrows its focus on span-based sequence labeling tasks, which
assign categorical labels to individual words within a sentence (Erdogan, 2010). Notable examples of
such tasks include named entity recognition (NER) and opinion expression identification (OEI) (Col-
lobert et al., 2011).

The inherent complexity of sequence labeling lies in the interdependencies of labels within a sequence.
Unlike simpler tasks where labels are independent, sequence labeling requires contextual understanding,
making it inherently more challenging (Rodrigues et al., 2014). Consequently, annotations from crowd
workers, who might not possess the expertise of trained annotators, often exhibit reduced accuracy. This
underscores the imperative to enhance annotation quality, a challenge that this study addresses.
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Figure 1: Our online worker selection framework for crowdsourcing.

A significant motivation driving this research is the potential application of a mixed feedback mecha-
nism in Reinforcement Learning from Human Feedback (RLHF) systems. RLHF systems traditionally
rely heavily on expert feedback, which, while accurate, is expensive and often not scalable (Casper et
al., 2023). By integrating feedback from both experts and aggregated crowd workers, we can achieve a
balance between accuracy and cost. This hybrid approach not only maintains the quality of feedback but
also significantly reduces the financial burden, making RLHF systems more accessible and scalable.

Historically, research in this domain has concentrated on annotation aggregation (Rodrigues et al.,
2014; Nguyen et al., 2017; Simpson and Gurevych, 2019), employing methods post data collection.
However, given the varied skill levels among crowd workers, a proactive approach that identifies and
leverages the most accurate workers during the data collection phase can significantly enhance data qual-
ity. Termed as online worker selection, this strategy involves iterative allocation of a set budget across
a pool of workers to optimize annotation quality (Chen et al., 2013). This dynamic process grapples
with the uncertainty of worker skill levels, necessitating a balance between exploring new workers and
exploiting currently identified proficient ones.

In the context of sequence labeling, traditional bandit-based algorithms (Rangi and Franceschetti,
2018) fall short due to the intricacies introduced by label dependencies. These intricacies manifest
challenges in both annotation evaluation and aggregation. To address the evaluation challenge, this
study employs the span-level F1 score (Derczynski, 2016), a widely recognized metric, as the feedback
signal in the worker selection process. The core challenge here is the accurate computation of the F1

score in the absence of expert annotations as a reference. The objective is to minimize reliance on costly
expert annotations. For aggregation, while the majority voting method is employed for its simplicity and
effectiveness, its reliability can be compromised when faced with divergent annotations from different
annotators.

The overarching goal of this research is to maximize the quality of annotations while minimizing
costs. This involves strategically replacing expert ground truth labels with aggregated crowd-sourced
labels, ensuring that the overall F1 score remains high. Such replacements are made only when there’s
a high level of agreement among crowd workers, indicating that expert evaluation might be redundant
for that particular sequence. The proposed worker selection algorithm, as illustrated in Figure 1, adopts
an iterative approach: tasks are assigned to a subset of workers, their annotations are evaluated, and the
resulting scores inform worker selection in subsequent rounds.

However, real-world datasets present challenges due to their imbalanced nature and limited scale (Ro-
drigues et al., 2014; Zhang et al., 2022). Addressing these challenges, this paper introduces a data
augmentation method tailored for span-based sequence labeling datasets. This method, designed to em-
ulate potential human annotation errors, ensures that aggregated annotations remain meaningful. Three
specific modifications, namely shifting, expanding, and shrinking, are applied to expert annotations,
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generating a spectrum of potential human annotations. This augmentation addresses dataset limitations,
facilitating the offline evaluation of worker selection algorithms.

In summary, this paper’s contributions are manifold:

• It presents the exploration of worker selection for span-based sequence labeling tasks, recognizing
the unique challenges they present.

• It employs the span-level F1 score, evaluated by both experts and crowd workers, as a feedback
mechanism, ensuring accurate worker selection.

• It introduces a data augmentation technique to counteract the limitations of real datasets, enabling
effective offline simulations.

• Through rigorous experimentation, it demonstrates the efficacy of the proposed method, achieving
impressive F1 scores while significantly reducing expert annotation costs.

2 Related Work

Many studies (Rodrigues et al., 2014; Rodrigues and Pereira, 2018; Nangia et al., 2021) have used crowd-
sourcing for its efficiency and scalability. However, crowdsourcing suffers from the diversity of crowd
workers’ expertise and effort levels that are hardly measurable to task requesters. Different approaches
to improving the quality of collected data have been proposed and studied. For span-based sequence
labeling tasks, prior studies mainly focus on annotation aggregation. Rodrigues et al. (2014) proposed
CRF-MA, a CRF-based model with an assumption that only one worker is correct for any label. HMM-
crowd from Nguyen et al. (2017) outperforms CRF-MA, but the effect of sequential dependencies is not
taken into account. Simpson and Gurevych (2019) uses a fully Bayesian approach BSC which is proved
to be more effective in handling noise in crowdsourced data. Aggregation methods are used after the
data collection process completes. But we aim to assure data quality and reduce cost during collecting.
To this end, we focus on worker selection in our paper.

In online worker selection, we need to balance between exploring new workers and exploiting ob-
served good workers. This exploration-exploitation tradeoff is extensively studied in the bandit litera-
ture (Lai and Robbins, 1985). In practice, we usually employ multiple crowd workers at the same time
to finish the tasks more effectively. The combinatorial multi-armed bandit (CMAB) (Chen et al., 2013)
models this circumstance. Biswas et al. (2015) and Rangi et al. (2018) reformulate the problem as a
bounded knapsack problem (BKP) and address it with the B-KUBE (Tran-Thanh et al., 2014) algorithm.
Song et al. (2021) introduce empirical entropy as the metric in CMAB and minimize the cumulative
entropy with upper confidence bound (UCB) based algorithm. Li et al. (2022) consider the scalability of
worker selection on large-scale crowdsourcing systems. These studies propose different methods under
the CMAB settings, but on more complex span-based sequence labeling tasks there exists no discussion.
We present the study of worker selection with CMAB on span-based sequence labeling tasks and show
that our work performs well on the quality and efficiency of data collection.

3 Methodology

Consider an online crowdsourcing system that can reach out to a group of crowd workers W =
{w1, w2, . . . , wN}. The workers are required to provide sequential annotations to a set of sentences
S = {s1, s2, . . . , sM}. More specifically, a worker annotates a sentence by assigning a tag from a finite
possible tag set C (e.g., a set of BIO tags (Ramshaw and Marcus, 1995)) to each word. An annotation
on sentence si by worker wj is a tag sequence aij = a1a2 . . . ak . . . al where ak ∈ C and l denotes
the length of the sentence. We assume that every sentence is annotated by K different workers indepen-
dently. We define a task as the process of annotating one entire sentence, and hence there are in total
KM tasks. We seek to acquire an annotated dataset in which the average F1 score of aij is maximized.
If we know which workers give the best annotations a priori, we can simply ask these workers to finish
all the tasks. However, such information is unavailable in practice, and we aim to design an algorithm
that learns the best workers throughout the crowdsourcing process.
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In the beginning, we let each crowd worker annotate one sentence. We also ask the experts(e.g.,
well-trained linguists assumed to give the most precise annotations) to give one annotation for each of
these sentences. Then we calculate the F1 score of the annotation with the expert annotations as ground
truth. We use these scores as the initial F1 scores of workers. At each time step t after initialization (as
illustrated in Figure 1), we select a subset of workers Wt ⊂ W to do annotation, based on criteria
discussed in Section 3.2. The size of the subset Wt should be neither too big nor too small (e.g., 0.3N ).
We randomly choose a subset of sentences St ⊂ S, assign each si ∈ St to K different workers in Wt,
and collect their annotations Ai = {ai1,ai2, . . . ,aiK}, ∀i ∈ {1, 2, . . . , |St|}. To evaluate workers’
F1 scores on Ai, one can use the expert annotations as the ground truth, which, however, can be very
expensive (İren and Bilgen, 2014). To cut down this cost, we reduce the usage of expert evaluations
whenever crowd annotations are similar enough. We use the Fleiss’ Kappa score κ to measure this
similarity. The κ score (κ ≤ 1) is a statistical measure of inter-annotator agreement. A larger value of
κ indicates stronger agreement between the workers. κ score exceeding an empirical threshold indicates
that the crowd workers reach a consensus on si. In that case, we aggregate Ai with MV and use the
aggregated annotation as the ground truth of sentence si. If the workers do not reach a consensus, we
resort to expert annotations as ground truth. Next, we can calculate the F1 scores of each aij ∈ Ai and
update the F1 scores of the selected workers.

3.1 Problem Formulation

At time t, we obtain K crowd annotations Ai on each sentence si ∈ St. We denote all annotations
collected on St by At = {A1,A2, . . . ,A|St|}. To simplify our expression, we use FExp

1 (aij) to represent
the F1 score of aij using expert annotation as ground truth, and FMV

1 (aij) to represent the F1 score of
aij using the MV aggregation of Ai ∈ At as ground truth. On collected annotation sets, FExp

1 (Ai)

denotes the average F1 score of all aij ∈ Ai. Similarly, FExp
1 (At) denotes the average F1 score of all

Ai ∈ At. As FExp
1 (At) reflects the true accuracy of crowd annotations, our objective is to maximize the

average expectation, or equivalently the cumulative expectation of FExp
1 (At) over time T . We formulate

this problem as a CMAB problem below:

max
T∑
t=1

E[FExp
1 (At)] (1)

s.t. Wt ⊂W, t ∈ {1, 2, . . . , T} (2)

Since we have no information about workers’ average F1 scores, we need to balance exploring po-
tentially better workers and exploiting the current best workers during worker selection. This tradeoff is
extensively discussed in bandit literature where arms with unknown distributions form super-arms. The
arms are associated with a set of random variables Xj,t with bounded support on [0, 1]. Variable Xj,t

indicates the random outcome of arm j in time step t. The set of random variables {Xj,t|t ≥ 1} asso-
ciated with arm j are independent and identically distributed according to certain unknown distribution
Dj with unknown expectation µ̄j . The platform plays a super-arm at each time step, and the reward of
arms in it is revealed. These rewards are used as a metric for selecting the super-arm in future time steps.
After enough time steps, the platform will be able to identify the best super-arm and keep playing it to
maximize the overall reward. Similar to bandit terminologies, we call each worker wj ∈ W an arm and
the worker subset Wt ⊂W a super-arm selected at t.

3.2 Worker Selection Algorithm

Specifically, there are three methods to calculate the reward of worker wj at time step t as follows.

Expert Only This is a benchmark approach where the F1 score is calculated using only expert anno-
tations as ground truth. This method provides intuitively the most accurate F1 scores. The reward of
worker wj is defined as:

µ
Exp
j (t) = FExp

1 (aij(t)) (3)
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The expert-only method requires an expert annotation on every sentence, which is costly and usually not
practical.

Majority Voting (MV) To reduce expert annotations, we aggregate Ai for each sentence si, and use
the aggregated annotation via MV as ground truth, i.e.,

µMV
j (t) = FMV

1 (aij(t)) (4)

Expert+MV When workers give very different annotations on the same sentence (usually when the
task is difficult), one can be uncertain about the voted (and possibly noisy) ground truth. In this case, we
want to resort to both crowd workers and experts. The choice is based on the well-known Fleiss’ Kappa
score κ that can quantitatively evaluate the agreement of crowd workers. For each sentence si, if κ(Ai)
is greater than a preset empirical threshold value τ , the reward of annotating workers is FMV

1 (aij(t)).
Otherwise, the reward is FExp

1 (aij(t)). In this way, MV is only used when the crowd workers can reach
an agreement. Thus the reward is always calculated based on reliable ground truth. We summarize the
reward of worker wj as:

µ
Exp+MV
j (t) =

{
FMV
1 (aij(t)), κ(Ai) > τ

FExp
1 (aij(t)), κ(Ai) ≤ τ

(5)

The ϵ-Greedy, Thompson Sampling, and Combinatorial Upper Confidence Bound (CUCB) are three
effective algorithms to solve the CMAB problem. For each worker wj ∈ W , both algorithms maintain
a variable µ̄j(t) as the average reward (i.e., the average F1 score) of worker wj at time step t. CUCB
additionally maintains a variable Tj(t) as the total number of sentences worker wj has annotated till time
step t. Details of the worker selection algorithm with our Exp.+MV metric are shown in Algorithm 1.
As for the selection criterion mentioned in the algorithm, ϵ-Greedy utilize a hyper-parameter ϵ which
refers to the probability of exploring random workers. Thus 1− ϵ refers to the probability of exploiting
the best workers till the current time step. Formally, Wt is selected with a random variable p ∈ [0, 1] as
below:

Wt =


random Wt ⊂W, p < ϵ

argmax
Wt⊂W

∑
wj∈Wt

µ̄j , p ≥ ϵ (6)

Thompson Sampling samples from gaussian distributions of workers’ rewards at each time step t, and
select workers which could maximize the total reward. CUCB handles the tradeoff by adding an item
considering Tj and t to µ̄j like:

Wt = argmax
Wt⊂W

∑
wj∈Wt

(
µ̄j +

√
3 ln t

2Tj

)
(7)

This makes workers with less annotations more likely to be selected as the algorithm proceeds. We
provide a brief analysis in Appendix B. We explain on the application of our worker selection algorithms
when building new datasets in Appendix E

3.3 Data Augmentation Method
We propose the data augmentation method to facilitate the offline simulation of the crowdsourcing pro-
cess, thus evaluating the worker selection algorithms. During offline simulation, when the worker se-
lection strategy selects a certain worker to annotate a certain sentence, we can use the annotation in the
original dataset if it exists. But if the selected worker did not annotate the sentence in the original dataset,
we need to generate an annotation for the sentence. And the generated annotation should be in the same
quality (depicted in F-score) as the real annotations by the worker. The generated annotation will be then
used with the other annotations on the same sentence for majority voting.

Generating the missing annotations for each worker wj is a great challenge when we expect the gen-
erated annotations to reflect the factual reliability of wj . In other words, we expect the average F1 score
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Figure 2: An example of the three methods to generate annotations. Chinese characters and correspond-
ing English words with red backgrounds indicate annotation spans.

of each wj ∈W to remain constant before and after augmenting the dataset with generated annotations.
This is critical and difficult since real datasets are imbalanced and of small scale that cannot well support
worker selection algorithms.

As there lack previous work on generating missing crowd annotations for span-based sequence label-
ing, we start with several naive algorithms such as randomly generating label sequences as annotations,
and mixing expert annotations with completely incorrect (e.g., empty) annotations. But these algorithms
either cannot produce annotations with expected F1 scores, or generate confusing annotations which
make later aggregation meaningless. This motivates us to design a data augmentation method special-
ized for span-based sequence labeling datasets.

Through our statistical analysis and observation on the real datasets, we characterized the 3 most com-
mon annotation error patterns. Due to space limitation, we defer the detailed analysis to Appendix C.
Based on these analysis results, we propose a data augmentation method as follows: For each sentence
si ∈ S, we modify the annotation span based on the expert annotation. We use three types of modifi-
cations to generate new annotation spans with different F1 scores as illustrated in Figure 2. The goal of
these modifications is to simulate varying annotation errors made by human annotators.

Shifting We move both the left and the right border of the annotation span simultaneously in the same
direction by one word per step.

Expanding We set one of the span borders fixed, and move the other border by one word per step to
increase the length of the annotation span.

Shrinking We set one of the span borders fixed, and move the other border by one word per step to
decrease the length of the annotation span.

We perform these modifications on a span multiple times, generating new annotation spans, until
(1)the modified span does not overlap with the original one, (2)one of the span borders reaches an end of
sentence or another span in the same sentence, or (3) the span length becomes 0.

For each sentence si ∈ S, si may contain multiple annotation spans. We perform modifications on
each span in si, and find all combinations of spans to form possible sentence annotations. With these
methods, we can imitate crowd annotations with different kinds of errors in practice. Next, for each
worker wj ∈ Wti, if wj has no annotation on si in the original dataset, we select one from all the expert
and generated annotations on si.

We first calculate φ̄j as the average F1 score of all annotations by wj on the original dataset, and then
follow the detailed steps described in Algorithm 2 to do the selection. We aim to keep the overall F1

score of wj unchanged.
To better illustrate the procedure of the augmentation, we provide a running example in Appendix D.
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Measure Chinese OEI CoNLL 2003

# of Sentence 8047 4580
# of Worker 70 47
Span Length 5.05 1.51

Max 658 1626
Min 153 48

Range 505 1578
Mean 368 350

Median 332.5 230
SD 135.23 328.01

Variance 18286.52 107589.34
CV 36.71% 93.57%

Table 1: Statistics of the original datasets. Span
lengths are averages. The terms SD and CV
represent Standard Deviation and Coefficient
of Variation respectively. The metrics Max,
Min, Range, Mean, Median, SD, Variance, and
CV pertain to the number of sentences anno-
tated by each worker, indicating dataset imbal-
ances.

Worker
ID

Rnd.
Gen.
|∆F1|

SES
Only
|∆F1|

SES
+Alg.2
|∆F1|

25 2.83 6.69 0.01
52 8.15 10.83 0.00
46 3.83 13.48 0.00
43 10.02 11.21 0.00
18 9.87 12.84 0.00
50 16.69 10.71 0.00
12 47.18 10.52 0.00

Avg. 14.08 10.90 0.0014

Table 2: Comparisons between different data
augmentation methods on the error of span-
level exact F1 score of every crowd worker.
The error |∆F1| is calculated as the absolute
difference between each worker’s F1 score af-
ter augmentation and his real F1 score. The
methods Rnd. Gen., SES Only and SES +
Alg.2 are introduced in Section 3.3.

4 Experiments

4.1 Original Datasets
We compare our CMAB-based algorithms to several widely adopted baselines on two span-based se-
quence labeling datasets.

CoNLL 2003 The CoNLL 2003 English named-entity recognition dataset (Tjong Kim Sang and
De Meulder, 2003) is a collection of news article from Reuters Corpus (Lewis et al., 2004). The dataset
contains only expert annotations for four named entity categories (PER, LOC, ORG, MISC). Rodrigues
et al. (2014) collected crowd annotations on 400 articles from the original dataset.

Chinese OEI The Chinese OEI dataset (Zhang et al., 2022) consists of sentences on the topic of
COVID-19 collected from Sina Weibo1, in which the task is to mark the spans of opinion expressions.
The Chinese OEI dataset contains expert and crowd labels for two opinion expression categories (POS,
NEG). Detailed statistics are shown in Table 1.

4.2 Data Augmentation
We augment both datasets with the method proposed in Section 3.3. According to Table 1, the most
hard-working annotator in the OEI dataset provided annotations on 658 sentences, while the least one
annotated only 153 sentences. On average, each crowd worker annotated 368 out of 8047 sentences
in the Chinese OEI dataset. For the offline simulation of the worker selection process, we want every
worker to annotate all 8047 sentences. Therefore we need to generate the missing 8047 - 368 = 7679
annotations for every worker, on average. This also applies similarly to the CoNLL 2003 dataset.

Through our method, the average F1 score of each w ∈ W remains nearly unchanged before and
after augmenting the original dataset with generated annotations2. Due to space limitation, we present
comparisons of different augmentation algorithms with 10 sampled workers in Table 2. The complete
results are deferred to Table 7 in the appendix. These results show that our SES + Alg.2 method clearly

1https://english.sina.com/weibo/
2The augmentation procedure takes about 2 hours on a computer with a 2.9 GHz Quad-Core Intel Core i7 CPU.

https://english.sina.com/weibo/
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Figure 3: Cumulative regrets w.r.t time steps of all different worker selection methods.

Method Token-level Span-level Exact Span-level Prop.

P R F1 P R F1 P R F1

Oracle 65.69 83.99 70.00 78.15 72.23 74.96 87.97 80.03 83.82
Random 55.95 66.42 57.50 64.42 55.64 59.40 75.70 62.61 68.54

ϵ-G (Exp.) 64.94 80.48 68.56 75.24 68.16 71.34 85.85 76.79 81.06
ϵ-G (MV) 64.44 80.22 67.98 74.69 67.59 70.77 85.67 76.09 80.59
ϵ-G (Exp.+MV) 64.68 80.94 68.41 75.08 68.37 71.40 85.93 76.62 81.01

TS (Exp.) 64.94 79.88 68.51 75.64 68.31 71.57 85.02 75.71 80.09
TS (MV) 64.47 79.19 67.91 74.97 67.54 70.80 84.14 74.21 78.86
TS (Exp.+MV) 64.20 79.09 67.62 75.27 67.83 71.12 84.77 75.39 79.81

CUCB (Exp.) 65.65 80.34 69.24 75.94 69.12 72.20 86.17 77.22 81.45
CUCB (MV) 65.39 80.00 68.91 75.95 68.90 72.08 86.13 76.67 81.12
CUCB (Exp.+MV) 65.33 81.12 69.11 75.70 69.30 72.21 86.17 77.28 81.48

Table 3: Detailed P, R, and F1 scores of all methods on the CoNLL 2003 dataset. All our algorithms
perform significantly better than the Random (i.e., naive crowdsourcing) baseline.

outperforms the other baselines, producing almost the same F1 scores for each worker as their original
ones.

4.3 Worker Selection

Baselines We test the Exp.+MV method with 4 baselines: Oracle, Random, Exp., and MV. Oracle
always selects the empirical best super-arm W opt at every time step t. Random selects a different set
of workers randomly at every time step t, which is equivalent to usual crowdsourcing procedure without
worker selection. Exp., MV, and Exp.+MV are CMAB-based algorithms introduced in Section 3.2.
The CMAB-based algorithms are tested with CUCB, Thompson Sampling and ϵ-Greedy as the worker
selection criterion respectively.

Regret as a Metric We evaluate our worker selection algorithms using cumulative regret, a metric
indicating the performance deviation from the oracle’s selection defined as:

R(T ) =
T∑
t=1

 ∑
wj∈W opt

µ̄j −
∑

wk∈Wt

µk(t)

 (8)
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Method Token-level Span-level Exact Span-level Prop.

P R F1 P R F1 P R F1

Oracle 62.88 68.62 64.80 54.48 51.97 53.07 72.79 64.07 68.15
Random 58.49 57.30 57.42 43.99 35.50 39.18 69.01 52.36 59.55

ϵ-G (Exp.) 61.91 64.58 62.61 51.72 46.37 48.76 72.28 60.25 65.72
ϵ-G (MV) 60.87 63.52 61.55 48.72 44.66 46.37 70.15 58.94 64.05
ϵ-G (Exp.+MV) 61.76 64.46 62.47 49.14 45.35 46.96 71.21 59.92 65.08

TS (Exp.) 62.66 64.91 63.20 49.76 42.34 45.69 72.15 60.20 65.63
TS (MV) 59.82 61.90 60.25 44.81 40.71 42.36 67.72 56.05 61.34
TS (Exp.+MV) 61.66 64.03 62.23 47.20 42.36 44.49 70.66 59.07 64.35

CUCB (Exp.) 63.02 63.75 62.93 52.24 45.51 48.56 73.05 59.53 65.60
CUCB (MV) 61.94 62.09 61.55 49.57 44.39 46.66 71.22 57.59 63.68
CUCB (Exp.+MV) 62.83 63.62 62.75 51.31 45.60 48.16 72.48 59.33 65.25

Table 4: Detailed P, R, and F1 scores of all methods on the Chinese OEI dataset. All our algorithms
perform significantly better than the Random (i.e., naive crowdsourcing) baseline.

0.00 0.25 0.50 0.75 1.00
Kappa Threshold

63.5

64.0

64.5

65.0

65.5

F1
 S
co
re Exp.+MV

MV
Exp.

(a) F1 score w.r.t τ on the
Chinese OEI dataset.

0.00 0.25 0.50 0.75 1.00
Kappa Threshold

0

20

40

60

80

100

Ex
pe
rt 
U
sa
ge
 (%

)

Exp.+MV

(b) Expert usage w.r.t τ on
the Chinese OEI dataset.

0.00 0.25 0.50 0.75 1.00
Kappa Threshold

79.00

79.25

79.50

79.75

80.00

F1
 S
co
re Exp.+MV

MV
Exp.

(c) F1 score w.r.t τ on the
CoNLL 2003 dataset.

0.00 0.25 0.50 0.75 1.00
Kappa Threshold

0

20

40

60

80

100

Ex
pe
rt 
U
sa
ge
 (%

)

Exp.+MV

(d) Expert usage w.r.t τ on
the CoNLL 2003 dataset.

Figure 4: F1 scores of the produced annotations and usage of expert for annotation evaluations w.r.t the
kappa threshold τ of the Exp.+MV method on Chinese OEI and CoNLL 2003 datasets.

In our experiments, we request 10 annotations per sentence, allowing CMAB-based algorithms to con-
verge, and select 20 workers at each time step t. On the Chinese OEI dataset, setting the kappa threshold
τ to 0.4 in Exp.+MV results in a 57.02% reduction in expert annotation cost, while a 0.65 threshold on
the CoNLL 2003 dataset leads to a 43.83% cost reduction.

Results show Random consistently underperforms across datasets. On the Chinese OEI dataset,
Exp.+MV surpasses MV, albeit with higher regret than Exp., justified by the substantial cost savings.
On the CoNLL 2003 dataset, Exp.+MV even outperforms Exp., suggesting crowd workers can provide
valuable input for simpler tasks like NER. Overall, algorithms employing the CUCB criterion demon-
strate superior performance, with CUCB (Exp.+MV) excelling in balancing cumulative regret and expert
cost.

Effect of τ on F1 and cost Next, we discuss how different kappa threshold values τ affect the average
F1 score of the produced annotation dataset. We test τ ∈ [0, 1] with a step of 0.05. In real datasets like
CoNLL 2003 and Chinese OEI, the number of annotations per sentence is often quite small. To better fit
the practical situations, we ask for 4 annotations on each sentence in the following experiments. Other
settings remain unchanged. Since CUCB performs better than Thompson Sampling and ϵ-Greedy on
both datasets, we display only the results from CUCB in later experiments.

On the Chinese OEI dataset, as illustrated in Figure 4(a) and 4(b), F1 increases sharply with τ ∈
[0, 0.4]. When τ = 0.4, Exp.+MV achieves 99.47% F1 score of Exp., and saves 47.19% of the expert
cost. The F1 score goes up slowly until τ reaches 0.8. When τ = 0.8, the F1 score of Exp.+MV becomes
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exactly the same as the one of Exp., and Exp.+MV still saves 6.6% of the expert cost.
The results on the CoNLL 2003 dataset are shown in Figure 4(c) and 4(d). Similarly, the F1 score

of the produced annotation dataset grows fast as τ ∈ [0, 0.45]. When τ = 0.45, the Exp.+MV method
already produce an annotation dataset with its F1 reaching 99.86% of Exp.. At this point, Exp.+MV
saves 88.57% of the expert cost. When τ = 0.65, Exp.+MV outperforms Exp. with a 100.04% F1 score
and a 65.97% reduction in expert usage.

Our CUCB (Exp.+MV) worker selection algorithm eliminates the need for expert evaluation on every
sentence. Instead, we harness crowd intelligence via our kappa-thresholded MV, producing datasets of
comparable or even superior quality to those relying solely on expert evaluations.

Extended F1 Metrics All of the F1 scores in the previous experiments are span-level proportional
scores calculated by the proportion of the overlap referring to the expert annotation (Zhang et al., 2022).
To provide additional comparisons between different methods, we also invoke token-level and span-level
exact P, R, F1 scores as supporting metrics. We run the whole process from data augmentation to worker
selection with all 3 metrics separately. The kappa threshold τ in Exp.+MV is set to 0.4 on the Chinese
OEI dataset and 0.65 on the CoNLL 2003 dataset. Detailed scores are listed in Table 3 and 4. The
results show that Exp.+MV achieves scores as good as Exp. and much better than MV, which validates
previous experiments and shows our worker selection methods are robust to different metrics.

Feedback Simulator We also test our worker selection methods with a feedback simulator. The sim-
ulator generates numerical feedback from Bernoulli distribution in annotation evaluations. This is to
eliminate the varying level of difficulty in different tasks and evaluate our worker selection algorithms
under more stable settings. Our algorithm achieves good results on the simulator. We put the definitions
and results in Appendix A.

Effect on ML Models To further show the effect of our worker selection algorithm on the performance
of machine learning models, we have run experiments with several widely-accepted models and provide
the results in Table 6. We observe a consistent increment of F1 score on the ML models, with our bandit-
based worker selection algorithm. This validates that our worker selection algorithm may help improve
the performance of ML models while saving budget on data crowdsourcing.

5 Conclusion

In this study, we introduced a CMAB-based worker selection strategy tailored for span-based sequence
labeling tasks, leveraging the span-level F1 with Exp.+MV as a feedback mechanism. To address the
challenges posed by unbalanced and limited real datasets, we innovated a data augmentation method.
This technique not only facilitates offline simulation but also mirrors the genuine annotation behaviors
of workers closely.

Our empirical evaluations underscore the efficacy of the proposed method. On the Chinese OEI
dataset, our approach achieved an impressive 99.47% F1 score, translating to a substantial 47.19% re-
duction in expert costs. Similarly, on the CoNLL 2003 dataset, we observed a remarkable 100.04% F1

score, with savings of up to 65.97% in expert costs, both benchmarks set against expert-evaluation-only
baselines. Furthermore, our method demonstrated its robustness with a 94.86% F1 score and a 65.97%
reduction in expert costs on a data-free simulator. Our approach also boosts ML model performance,
optimizing both accuracy and cost.
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Method F1

Oracle 74.12
Random 65.12

Exp. 69.78
MV 66.80

Exp.+MV 68.29

Table 5: The overall span-level proportional F1 scores of all methods with the feedback simulator.

Method Original w/ Our Alg.

LSTM-Crowd-cat 52.66 54.27
Bert-BiLSTM-CRF 52.14 54.51
Annotator-Adaptor 53.86 56.16

Table 6: Span-level exact F1 scores of widely-accepted deep learning models on the Chinese OEI dataset.
LSTM-Crowd-cat is from Nguyen et al. (2017). Bert-BiLSTM-CRF and Annotator-Adaptor are from
Zhang et al. (2022). We provide results with and without our worker selection algorithm.
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A Feedback Simulator

The performance of crowd workers can vary across different types of annotation tasks. To evaluate the
Exp.+MV worker selection method in more stable conditions without task-specific influence, we do
not actually annotate the sentences, but directly use a worker’s average F1 score to simulate his score
on each sentence he annotates. The simulated scores are used as the numerical feedback for worker
selection. Specifically, for each worker w, we calculate in advance two average F1 scores for all of their
annotations on the original dataset. The two F1 scores for each worker are calculated using expert and
majority vote (MV) evaluation respectively, denoted as φ̄Exp.

w and φ̄MV
w . At each time step t, for every

sentence si in the sentence set to be annotated St, we ask K different workers from the current selected
workers Wt to annotate it. Then, we use a random value between 0 and 1 as the agreement level κ. If κ
exceeds the threshold value τ (set to 0.4 in Exp.+MV), we independently generate feedback for the K
workers from a Bernoulli distribution with a probability parameter set to φ̄MV

w . If not, the feedback is
generated from a Bernoulli distribution with a probability parameter set to φ̄Exp.

w . The span-level average
F1 scores of the annotated dataset using different worker selection algorithm are shown in Table 5. Our
feedback mechanism Exp.+MV for worker selection achieved comparable performance to the expert-
only mechanism Exp. (68.29 versus 69.78), while in the same time reduced expert involvement in
evaluation by 59.88% under the dataset-independent conditions.

B Regret Analysis

We provide a brief regret analysis of the worker selection framework assuming that we use the ϵ-greedy
algorithm and that each worker’s reward follows a Bernoulli distribution.
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Algorithm 1 The worker selection algorithm with the Expert+MV metric.
1: Let each worker wj ∈ W annotate a random sentence and initialize variable µ̄j with F1 by expert

evaluation
2: For each worker wj ∈W , initialize Tj ← 1
3: t← |W |
4: while unannotated sentences exist do
5: t← t+ 1
6: Select Wt ⊂W based on certain criterion (e.g., (6), (7))
7: Split Wt into several disjoint subsets {Wt1, . . . ,Wti, . . . ,Wtn}, each containing K workers
8: for all Wti do
9: Let each wj ∈Wti annotate an sentence si and collect the annotations Ai

10: if κ(Ai) > τ then
11: Update Tj and µ̄j with FMV

1 (aij(t))
12: else
13: Update Ti and µ̄j with FExp

1 (aij(t))
14: end if
15: end for
16: end while

The main proof follows the proof of Theorem 1 in (Garcelon et al., 2022). The key contribution here
is that we need to specify that the evaluation signal (generated by majority voting) is a generalized linear
model of workers’ true reward signal (generated by expert/oracle). To this end, we utilize the following
form of the Chernoff bound which applies for any random variables with bounded support.

Lemma 1 (Chernoff Bound (Motwani and Raghavan, 1995)) Let X1, X2, · · · , XN be independent ran-
dom variables such that xl ≤ Xi ≤ xh for all i ∈ {1, 2, · · · , N}. Let X =

∑N
i=1Xi and µ = E(X).

Given any δ > 0, we have the following result:

P (X ≤ (1− δ)µ) ≤ e
− δ2µ2

N(xh−xl)
2 . (9)

For the purpose of our discussion, let Xi ∈ {0, 1} be a binary random variable, where Xi = 0 denotes
that worker i provides an incorrect solution, and Xi = 1 denotes that worker i generates a correct
solution. Define X =

∑
i∈N Xi.

We aim to approximate PMV, which is the probability that the majority of the N workers provide the
correct estimate. We apply the Chernoff Bound in Lemma 1 to PMV. We can compute

E(X) = p̄ =

∑N
i=1 pi
N

. (10)

Based on (9), we let µ = E(X), δ =
N(p̄− 1

2
)

N
2
+N(p̄− 1

2
)
, xl = 0, xh = 1, and get the following result:

PMV = P

(
X ≥ N

2

)
= 1− P

(
X ≤ N

2

)
≥ 1− e−

δ2µ2

N (11)

= 1− e−

N2(p̄− 1
2 )2

[N2 +N(p̄− 1
2 )]2

[N2 +N(p̄− 1
2 )]2

N (12)

= 1− e−
N2(p̄− 1

2 )2

N (13)

= 1− e
−N

(∑N
i=1 pi
N

− 1
2

)2

. (14)
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Algorithm 2 The annotation selection algorithm.
1: For each worker wj ∈ W , maintain (1)a variable φ̂j as the average F1 score of the selected annota-

tions by wj so far, (2)a set Aj of selected annotations by wj

2: Generate all possible annotations Ap
1 on s1 ∈ S, calculate FExp

1 (a1k) for each a1k ∈ Ap
1

3: For each w ∈W , initialize φ̂j with the FExp
1 (a1k) closest to φ̄j , and append the a1k to Aj

4: for all si ∈ S\s1 do
5: Generate all possible annotations Ap

i on si ∈ S, calculate FExp
1 (aik) for each aik ∈ Ap

i

6: for all wj ∈W do
7: if φ̂j > φ̄j then
8: Update φ̂j with the maximal FExp

1 (aik) less than φ̄j , and append aik to Aj

9: else
10: Update φ̂j with the minimal FExp

1 (aik) greater than φ̄j , and append aik to Aj

11: end if
12: end for
13: end for

Through approximating PMV by its lower bound in (14), we can see that the evaluation signal (repre-
sented by PMV) is an increasing function in each worker’s capability pi and twice-differentiable. That is,
PMV is a generalized linear function, which satisfies Assumption 3 in (Garcelon et al., 2022). Therefore,
one can follow the proof of Theorem 1 in (Garcelon et al., 2022) that the ϵ-greedy algorithm yields a
sub-linear regret with order Õ(T 2/3).

C Case Study of Annotation Errors

Based on our statistical analysis of the Chinese OEI dataset, we find that 74.80% of annotations have
different types of errors. And these annotation errors could be decomposed to three basic error types,
namely Shifting, Expanding, and Shrinking (SES). In our data augmentation algorithm, we reversely
used SES modifications and their combinations on the ground truth annotations to generate annotations
with varying errors made by crowd workers. In this section, we provide a detailed characterization of
human-made errors observed on annotated data with real cases to better motivate these modifications.

Shifting Some crowd annotation spans are as long as expert ones, but their positions are wrong. Shift-
ing simulates this type of error. As depicted in Figure 5, both the expert span and the crowd span are
three words long and of negative polarity. The difference is that the crowd span is shifted to the left by
2 words compared with the expert span. This type of error can be generated with Shifting on the expert
annotations.

如果你感到有些沮丧或失落，你不妨试试运动。

If you feel slightly depressed or lost, you could try sports.
Expert

Crowd 
Worker

如果你感到有些沮丧或失落，你不妨试试运动。

If you feel slightly depressed or lost, you could try sports.

Figure 5: A case in which the crowd worker annotates a span with correct length and polarity but incorrect
position.

Expanding Expanding is used to generate longer (than expert span) error spans. It might be intuitive
that annotators barely make errors such as expanding to a very long span. However, in the case illustrated
in Figure 6, the expert annotates five short spans separated by commas, while the crowd worker uses a
very long span that covers the whole sentence, which is obviously not accurate. To simulate such human-
made errors, we can expand an expert span to cover unnecessary words. Statistically, 4.03% of annotation
errors are very long spans with more than 15 Chinese characters. So we do not set an upper bound of
span length in Expanding.
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良好的⾝体素质是⾼效的保障，是成功的保障，是⾼⽔准
⽣活的保障，是为社会多做贡献的保障，是⽣命的保障！

Good physical fitness is the guarantee of efficiency, of success, of 
a high standard of living, of contributing more to society, of life!

Expert

Crowd 
Worker

良好的⾝体素质是⾼效的保障，是成功的保障，是⾼⽔准
⽣活的保障，是为社会多做贡献的保障，是⽣命的保障！

Good physical fitness is the guarantee of efficiency, of success, of 
a high standard of living, of contributing more to society, of life!

Figure 6: A case in which the crowd worker uses a very long span that covers the whole sentence.

Shrinking Shrinking is useful since crowd workers often ignore some words when annotating. As
shown in Figure 7, the crowd worker failed to find all words expressing positive opinions.

我昨天在家⾥过得⾼效⽽又充实。

I had a productive and fruitful day yesterday at home.
Expert

Crowd 
Worker

我昨天在家⾥过得⾼效⽽又充实。

I had a productive and fruitful day yesterday at home.

Figure 7: A case in which the crowd worker does not annotate all words with polarity.

Sometimes crowd workers ignore a whole span in expert annotations. This is why we set the lower
bound of span length to zero in Shrinking, which means we can shrink a span into no span.

These three types of errors may occur separately or combined in real crowd annotations. Such that
an error could be both shifted and shrunk. This is why we use the combination of these three types of
modifications to simulate human-made errors in our data augmentation algorithm.

D A Running Example of Data Augmentation

We here provide a running example to illustrate how an annotation for a certain worker on a certain
sentence is generated with our proposed augmentation method. Suppose we have an English sentence:

Although he looked very depressed yesterday, he has already become much more cheerful now.

And an expert annotation:

Although he looked [NEGATIVE: very depressed] yesterday, he has already become [POS-
ITIVE: much more cheerful] now.

If the crowd worker Sam has an annotation on this sentence in the original dataset, we use it directly
in the augmented dataset. Otherwise, we generate an annotation for Sam with our data augmentation
method.

When generating annotation for Sam, we follow the steps below:

1. For each span in the expert annotation, we apply the Shifting, Expanding, and Shrinking (SES)
modifications on it. After this step, we have several lists of annotation, each list contain annotations
with only one modified span:

• List 1, modifications of the first span, containing N1 annotations:
– Although he looked [NEGATIVE: very depressed] yesterday, he has already become

much more cheerful now. # Unmodified, span-level proportional F1 = 1.0
– Although he looked very [NEGATIVE: depressed yesterday], he has already become

much more cheerful now. # Shifting, F1 = 0.5
– Although he looked very depressed [NEGATIVE: yesterday ,] he has already become

much more cheerful now. # Shifting, F1 = 0
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... # Other Shifting modifications
– Although he [NEGATIVE: looked very depressed] yesterday, he has already become

much more cheerful now. # Expanding, F1 = 1.0
... # Other Expanding modifications
– Although he looked very [NEGATIVE: depressed] yesterday, he has already become

much more cheerful now. # Shrinking, F1 = 0.5
... # Other Shrinking modifications

• List 2, modifications of the second span, containing N2 annotations:
– Although he looked very depressed yesterday, he has already become [POSITIVE: much

more cheerful] now. # Unmodified, span-level proportional F1 = 1.0
– Although he looked very depressed yesterday, he has already become much [POSITIVE:

more cheerful now]. # Shifting, F1 = 0.6667
– Although he looked very depressed yesterday, he has already become much more [POSI-

TIVE: cheerful now .] # Shifting, F1 = 0.3334
... # Other Shifting modifications
– Although he looked very depressed yesterday, he has already [POSITIVE: become much

more cheerful] now. # Expanding, F1 = 1.0
... # Other Expanding modifications
– Although he looked very depressed yesterday, he has already become much [POSITIVE:

more cheerful] now. # Shrinking, F1 = 0.6667
... # Other Shrinking modifications

2. We choose one annotation from each list, and combine them to generate an annotation with 2 spans.
This is done for all combinations of the annotations in the two lists. Note that if the two spans
overlay with each other, we merge them into one span. After step 2, we have one list of annotations:

Combined List, containing less than or equal to N1 ×N2 annotations:
• Although he looked [NEGATIVE: very depressed] yesterday, he has already become

[POSITIVE: much more cheerful] now. # span-level proportional F1 = 1.0
• Although he looked very [NEGATIVE: depressed yesterday] , he has already be-

come [POSITIVE: much more cheerful] now. # span-level proportional F1 = 0.75
• Although he looked very depressed [NEGATIVE: yesterday ,] he has already be-

come [POSITIVE: much more cheerful] now. # span-level proportional F1 = 0.5
... # Other combinations with F1 ranging from 0 to 1.0

3. We choose one annotation from the combined list as Sam’s annotation on this sentence, according
to the following procedure:

(a) Sam has an average F1 score Fori = 0.57 on the original (real) dataset.
(b) We have already got 10 annotations for Sam in the augmented dataset, which has an average

F1 score Faug 10 = 0.54.
(c) We are choosing annotation on the 11th sentence for Sam.
(d) We firstly select two annotations with the closest F1 scores to Fori from the combined list,

one higher than Fori, and one lower than Fori, as candidate annotations. In this case, the two
annotations could have F1 scores of 0.58 and 0.52 respectively.

(e) If Faug 10 > Fori, we choose the annotation with the lower F1 score (0.52) as Sam’s annotation
on this sentence. Otherwise, we choose the annotation with the higher F1 score (0.58). This is
to ensure that the average F1 score of Sam’s annotations in the whole augmented dataset, Faug,
is as close to Fori as possible, which reflects Sam’s reliability (i.e., performance). In this case,
we choose the annotation with F1 score of 0.58.

By generating the missing annotations in the original dataset with the method above, we could have
an augmented dataset.
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E Explanation of Worker Selection on Building New Datasets

When creating new datasets, we expect to have a few (e.g. five) experts and a relatively large group of
(e.g. a hundred) crowd workers available for annotation.

At each time step, we select a group of (e.g. 20) crowd workers, and request them to annotate a few
(e.g. 5) sentences, resulting in 4 crowd annotations on each sentence. Now we calculate the agreement
of the annotations on each sentence, if the agreement is high (e.g. greater than 0.4), we use the MV
aggregation of the crowd annotations as the ground truth, and calculate the F1 scores of each worker’s
annotation. Otherwise, we ask an expert to give an annotation on the sentence, and calculate the F1 score
of each worker on the expert annotation. Note that the expert annotates only when the agreement is low.
After this time step, we have crowd annotations on the sentences and their F-scores, which can be used
to update the average score of each worker. This procedure is repeated until we have enough annotations
on every sentence.

In other words, the Expert+MV approach works with both crowd workers and experts available (e.g.
on an online system) when building datasets. The Expert+MV is an iterative approach in which the expert
annotates when needed. And it saves the cost of expert annotations by using the MV aggregation of
crowd annotations as the ground truth when possible. Our experiment results show that the Expert+MV
approach can save 47.19% of the cost of expert annotations on the Chinese OEI dataset, and 65.97% on
the CoNLL’03 dataset respectively.

However, even in the case that no expert is available, which means that Expert+MV falls back to MV,
we can still observe that the MV approach outperforms the Random baseline (which is an equivalent of
normal crowdsourcing procedure which assigns an equal amount of sentences to each worker randomly)
by a large gap. In this case, the MV approach saves 100% of expert annotation cost, but still produced
crowd annotation with good quality. Please refer to Table 3 and Table 4 for more detailed results.
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Worker
ID

Ori.
F1

Rnd.
Gen.
F1

SES
Only

F1

SES
+Alg.2

F1

Worker
ID

Ori.
F1

Rnd.
Gen.
F1

SES
Only

F1

SES
+Alg.2

F1

25 62.90 60.07 69.59 62.89 37 37.15 96.10 26.79 37.16
32 60.87 41.37 68.79 60.87 13 36.19 31.62 25.14 36.20
42 53.88 4.37 66.57 53.88 20 36.11 71.44 25.02 36.12
5 52.07 50.74 60.76 52.06 64 35.97 65.66 25.39 35.97
55 50.70 30.24 61.13 50.70 63 35.22 75.40 24.73 35.22
2 50.53 91.99 60.92 50.53 6 35.15 65.74 25.00 35.16
52 50.08 41.93 60.91 50.08 10 34.63 51.28 25.08 34.64
17 49.82 43.73 35.82 49.82 66 33.75 60.98 24.99 33.75
57 49.25 13.17 35.59 49.25 53 32.90 27.51 24.78 32.89
11 49.04 53.71 35.19 49.03 4 32.72 8.40 24.77 32.72
26 48.89 5.17 35.59 48.82 21 32.19 73.47 24.78 32.19
36 48.71 15.53 35.27 48.70 62 32.16 48.71 24.89 32.16
46 48.67 44.84 35.19 48.67 1 32.10 34.42 24.96 32.10
29 48.60 95.39 35.21 48.60 41 31.94 77.55 24.88 31.93
35 47.07 23.64 35.34 47.07 51 31.78 68.07 24.85 31.78
49 46.80 60.30 35.27 46.80 31 31.61 29.44 24.59 31.61
54 45.63 18.74 34.45 45.64 8 31.05 28.55 24.76 31.05
14 45.13 60.99 34.54 45.13 67 30.91 95.51 24.22 30.91
43 44.93 34.91 33.72 44.93 58 30.70 21.64 23.96 30.70
7 44.37 23.89 33.50 44.37 65 30.61 4.51 24.17 30.60
59 44.36 72.37 33.61 44.37 38 30.47 4.82 24.11 30.47
23 43.38 4.85 33.58 43.38 28 29.86 2.63 24.00 29.86
56 43.37 41.96 33.31 43.37 45 29.38 36.13 24.15 29.38
0 41.60 66.81 28.19 41.61 30 28.70 61.16 21.88 28.71
18 41.40 31.53 28.56 41.40 15 25.73 38.92 21.40 25.73
16 41.31 57.13 28.03 41.31 19 24.69 4.39 21.31 24.70
22 41.05 85.83 28.21 41.06 44 23.42 7.15 21.08 23.42
47 40.78 82.33 27.91 40.78 9 22.88 96.22 21.22 22.89
61 40.22 12.20 28.44 40.22 33 22.36 29.89 19.50 22.36
40 40.01 84.98 28.38 40.02 39 20.69 57.73 19.26 20.69
50 39.35 56.04 28.64 39.35 69 20.39 63.02 19.26 20.40
27 38.77 34.07 27.87 38.77 3 17.12 28.70 18.66 17.13
48 38.35 23.77 27.57 38.35 24 16.96 42.73 18.68 16.98
34 38.29 5.69 28.08 38.30 68 14.53 13.63 7.69 14.53
12 37.96 85.14 27.44 37.96 60 13.66 22.69 8.15 13.66

Table 7: Comparisons between different data augmentation methods on the span-level exact F1 score
of every crowd worker. Ori. stands for the original score in real datasets before any augmentation.
Rnd. Gen. is a naive augmentation method with random generated annotations. SES Only indicates
the shifting, shrinking, and expanding method we proposed. SES + Alg.2 means SES with Algorithm 2
which is our final method.


