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A B S T R A C T

The task of Chinese Spelling Check (CSC) is crucial for identifying and rectifying spelling errors in Chinese
texts. While prior work in this domain has predominantly relied on benchmarks such as SIGHAN for evaluating
model performance, these benchmarks often exhibit an imbalanced distribution of spelling errors. They are
typically constructed under idealized conditions, presuming the presence of only spelling errors in the input
text. This assumption does not hold in real-world scenarios, where spell checkers frequently encounter a
mix of spelling and grammatical errors, thereby presenting additional challenges. To address this gap and
create a more realistic testing environment, we introduce a high-quality CSC evaluation benchmark named
YACSC (Yet Another Chinese Spelling Check Dataset). YACSC is unique in that it includes annotations for
both grammatical and spelling errors, rendering it a more reliable benchmark for CSC tasks. Furthermore, we
propose a hierarchical network designed to integrate multidimensional information, leveraging semantic and
phonetic aspects, as well as the structural forms of Chinese characters, to enhance the detection and correction
of spelling errors. Through extensive experiments, we evaluate the limitations of existing CSC benchmarks and
illustrate the application of our proposed system in real-world scenarios, particularly as a preliminary stage in
writing assistant systems.
1. Introduction

The primary objective set forth in the field of Chinese Spelling Check
(CSC) is to discover and rectify spelling errors contained within Chinese
written material. In the realm of Natural Language Processing (NLP),
CSC has emerged as a significant research area due to common spelling
issues that occur during manual writing, mistouches on typing devices,
automatic speech recognition (Hartley and Reich, 2005), and optical
character recognition (Afli et al., 2016). It has become a crucial compo-
nent for numerous NLP tasks, including automatic essay scoring (Dong
and Zhang, 2016), search query correction (Martins and Silva, 2004;
Gao et al., 2010), and optical character recognition.

Traditionally, the evaluation of CSC model performance relied on
benchmarks, among which SIGHAN (Wu et al., 2013; Yu et al., 2014;
Tseng et al., 2015) is frequently considered as a reference. However,
these benchmarks generally present an idealized distribution, wherein
the input text has been pre-polished for grammatical errors, leaving
only spelling errors for rectification. In real-life scenarios, Chinese
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spelling checkers often grapple with a mixture of spelling and grammat-
ical errors, thereby creating additional complexities. Table 1 showcases
the improved results when a CSC is executed prior to a grammat-
ical error correction, signifying the importance of considering both
grammatical and spelling errors during the CSC process.

To enhance the efficacy of spelling checks in a more realistic en-
vironment where both grammatical and spelling errors co-exist, we
propose a novel approach to the CSC task. Whereas previous method-
ologies concentrated solely on spelling errors, our approach, by taking
into account grammatical errors, aims to create more alignment with
real-world spelling check scenarios.

In this study, we introduce a new paradigm for evaluating Chinese
Spelling Check (CSC) models and present an evaluation dataset named
YACSC (Yet Another Chinese Spelling Check Dataset), derived from
the YACLC (Yet Another Chinese Learner Corpus) (Wang et al., 2021).
We meticulously selected 2550 sentence pairs apt for CSC, annotated
them, and conducted comprehensive analyses to glean deeper insights.
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Table 1
Different results of Chinese spelling check before or after grammatical error correction. The word ‘‘ ’’ is a grammatical
error, and the character ‘‘ ’’ is a spelling error. GEC only and CSC only refer to performing either grammatical error
correction or spelling check individually. CSC → GEC indicates performing spelling check before grammatical error correction,
while GEC → CSC indicates performing grammatical error correction before spell check.
We provide a thorough exposition of the annotation specifications
grounded in linguistic theories. In a novel approach, we annotated
the YACSC dataset with simplified Chinese text, deliberately preserving
grammatical errors to mimic real-world scenarios. Table 1 exemplifies
this, showcasing a sentence with a spelling error (‘‘ ’’ instead of ‘‘ ’’)
nd a grammatical error (‘‘ ’’ incorrectly following ‘‘ ’’). Addi-

tionally, we curated a subset of the dataset with corrected grammatical
errors to evaluate existing CSC models in ideal conditions, akin to the
SIGHAN benchmarks.

Contrastingly, prior works in this domain operated under ideal
conditions, neglecting the influence of grammatical errors on spelling
checks. In response, we introduce a cutting-edge Chinese spelling
checker, a hierarchical network that integrates multidimensional infor-
mation, serving as a baseline for our innovative paradigm. This model
leverages BERT (Devlin et al., 2019) to capture contextual semantic
nuances and employs a confusion encoder to encode both phonetic and
visual aspects of Chinese characters, discerning the subtle relationships
between them, including phonetic proximity and graphic proximity.
Through a hierarchical encoder and a parameterized fusion mecha-
nism, the model synthesizes information into a concise representation,
facilitating word relationship establishment.

We subjected our model to rigorous evaluation on both the estab-
lished SIGHAN benchmarks and our YACSC evaluation set. The results
affirm that our model delivers competitive performance under ideal
conditions on the SIGHAN benchmarks, showcasing its proficiency in
spelling error correction. Notably, it surpasses other baseline models
on the YACSC set, which is tailored to reflect real-world scenarios
inclusive of grammatical errors. This underscores our model’s capability
to navigate the intricacies of such scenarios, leveraging the rich infor-
mation embedded in Chinese characters. These outcomes underscore
the practical applicability of our model in CSC tasks.

To encapsulate, the contributions of this work are threefold:

• We introduce a novel paradigm for CSC, enabling spelling checks
in contexts marred by grammatical errors.

• We develop YACSC, a high-quality CSC evaluation set annotated
with ungrammatical sentences from YACLC, providing a robust
framework to assess CSC models under our paradigm.

• We propose an innovative Chinese spelling checker that concur-
rently encodes the phonetic and graphic dimensions of Chinese
characters, demonstrating superior performance in both ideal and
real-world scenarios compared to baseline models.

2. A real-world scenarios Chinese Spelling Check evaluation set:
YACSC

Early Chinese spelling check datasets such as SIGHAN are usually
built under ideal conditions, assuming the input contains spelling er-
184

rors only. However, in actual application scenarios, the spelling check
task will inevitably encounter sentences with grammatical errors. To
test the effectiveness of existing CSC models in real-world scenarios
and their potential to improve grammar correction, we propose a
new evaluation set called YACSC. It is based on the Chinese learner
corpus, YACLC (Wang et al., 2021), which includes multidimensional
crowd-sourcing annotations for sentences written by Chinese language
learners.

YACSC is a two-stage corpus for evaluating the performance of
CSC models. The corpus consists of sentences with both spelling and
grammatical errors, which are then corrected in two stages. The first
stage corrects the spelling errors, while the second stage corrects gram-
matical errors. We also provide two subsets of YACSC, YACSC_w/_GE,
and YACSC_w/o_GE, which evaluate the performance of the CSC model
in real-world and ideal scenarios, respectively. The instances of YACSC
can be found in Fig. 1.

2.1. Annotation specification

The goal of the CSC task is to identify and correct spelling mistakes
that arise from phonetic and shape similarity. Previous research has
created spelling check datasets and sets of confused Chinese characters,
including phonological and morphological information. However, these
studies have not established a clear criterion for judging phonetic
similarity and shape similarity. From the perspective of linguistics, this
paper attempts to summarize the principles for determining a group of
Chinese characters as phonetic-like or shape-like characters during the
tagging process, for reference.

In the annotating process, it is necessary to mark the words that
have the relationship of phonetic proximity and graphic proximity.

Phonetic proximity. Modern Chinese syllables are composed of three
components: initials, finals, and tones, each of which serves a unique
function in differentiating between syllables. To ensure the accuracy
of the labeling process, combined with the knowledge of Chinese
phonology, we summarized the consonants proximity table and vowels
proximity table. Additionally, we have established the following six
principles to judge phonetic proximity (exclude initials, finals, and
tones are totally the same):

• The finals are the same, and the initials are similar; Such as
( )- ( ), which have the same finals üe and similar ini-

tials j and q.
• The initials are the same, and the finals are similar; Such as ( )-

( ), which have the same initials j and similar finals i and
ing.

• The initials are similar, the finals are similar, and the tones are the
same; Such as ( )- ( ), which have similar initials zh
and sh, similar finals an and uan, tones are both fourth tones.
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Fig. 1. The construction stages of our YACSC dataset. We first use the Levenshtein distance tool to annotate the substitution between the original sentences and annotated sentences
and annotate the spelling errors (a). Then, we conduct two versions of YACSC datasets, YACSC_w/_GE (b) and YACSC_w/o_GE (c), which maintain the grammatical errors and
correct the grammatical errors. Finally, both YACSC_w/_GE and YACSC_w/o_GE are combined to build the YACSC dataset (d).
• The initials are the same, the finals are the same, and the tones
are different; Such as ( )- , which have the same
initials zh, same finals ao, tones are first tones and fourth tones.

• Zero initial and non-zero initial syllables must have the same
finals (Syllables starting with y, w, or yu are zero initial syllables);
Such as ( )- ( ), which have Zero initial w and none-zero
initial zh with same final u.

• The comparison between zero initials and zero initial syllables fol-
lows the principle of vowel similarity. Such as ( )- ( ),
following the principle of vowel similarity, in and ing are similar.

The consonants proximity table and vowels proximity table are
attached to Appendix.

Graphic proximity. The shape proximity is mainly determined accord-
ing to the Chinese character components. Generally speaking, charac-
ters with the same main character-forming components are graphically
similar. The main component refers to the part that occupies a more
significant proportion of the area in the word formation. Following are
some examples:

(1)
(2)
(3)

Graphically similar characters are in []. The former character is the
wrong character, whereas the latter is correct. ‘‘ ’’ and ‘‘ ’’ have
the same component ‘‘ ’’ in example (1); ‘‘ ’’ and ‘‘ ’’ have the
same component ‘‘ ’’ in example (2); ‘‘ ’’ and ‘‘ ’’ have the same
component ‘‘ ’’ in example (3).

2.2. Annotation process

Fig. 1 shows the construction process of YACSC. We built YACSC
based on YACLC (Wang et al., 2021), a large-scale, multidimensional
185
annotated Chinese learner corpus. YACLC contains 32,124 sentences
written by Chinese as a Second Language (CSL) learners, and each
sentence is annotated by ten annotators. We annotate on the published
version of YACLC,1 which contains the training, validation and test sets,
to construct YACSC.

Initially, we employed the Levenshtein distance tool to identify sub-
stitutions between the original and corrected sentences from YACLC,
subsequently requesting annotators to verify whether these substitu-
tions rectified spelling errors according to the annotation specification
in 2.1. We used classifications P, G, B, and 𝑁 to differentiate specific
connections in the substitutions based on phonetic similarity, graphic
similarity, a blend of both, and instances without any spelling mis-
takes, correspondingly. Subsequently, we pinpointed 1275 sentences
verified to have spelling errors, and for balance in our research, we
randomly chose an equal number of sentences, confirmed to be free of
spelling mistakes. This random sampling ensured the preservation of
the targeted ratio of sentences with spelling errors in our study. Then,
we applied the confirmed spelling corrections to the original sentence,
ensuring grammatical errors remained, resulting in the YACSC_w/_GE
dataset. Progressing from this, we rectified grammatical errors in both
the source and target sentences of the YACSC_w/_GE dataset, culminat-
ing in the YACSC_w/o_GE dataset. The final step involved combining
the source and target sentences from the YACSC_w/_GE dataset with
the target sentences from the YACSC_w/o_GE dataset to construct the
complete YACSC dataset.

Finally, we acquired the two-stage dataset YACSC, where the first
stage focuses on correcting spelling errors, and the second stage ad-
dresses grammatical mistakes. We also created two subsets of YACSC
based on whether the original sentence contained grammatical errors:

1 https://github.com/blcuicall/YACLC

https://github.com/blcuicall/YACLC
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Table 2
Detail statistics of YACSC dataset.

Description Statistics

Total sentences 2550
Sentences with spelling errors (%) 1275 (50%)
Sentences with grammatical errors (%) 1735 (68%)
Average length 22.95
Phonetic errors 967
Graphic errors 210
Both phonetic and graphic errors 312
Total errors 1489

• YACSC_w/o_GE: The grammatical errors in original sentences are
corrected to validate how existing models perform under ideal
conditions.

• YACSC_w/_GE: The original sentences have both grammatical and
spelling errors, which are used to validate how existing models
perform in real-world scenarios.

.3. Statistics and analysis

Table 2 provides an overview of the statistics for YACSC, which con-
ists of 2550 samples, with 50% of them being annotated for spelling
istakes. 68% of the sentences in YACSC_w/_GE have grammatical er-

ors. In terms of error types, 65% of the typos are due to pure phonetic
imilarity, 20% is a result of both phonetic and graphic similarity, and
he remaining typos are caused by pure graphic similarity.

Compared with the existing open-source evaluation sets, YACSC
as several advantages. Firstly, different from SIGHAN benchmarks,
n which the original data is in traditional Chinese and needs to be
onverted to simplified Chinese before use, the annotations are directly
ased on Simplified Chinese text, eliminating the noise introduced by
he conversion between simplified and traditional Chinese or regional
ifferences, as shown in Table 4. Secondly, spelling mistakes in the
riginal sentences are annotated without modification, allowing for the
resence of grammatical errors. This is more aligned with practical
pplication scenarios in NLP tasks, as CSC models are often used in
reprocessing stages and, therefore, encounter more complex situations
han just misspelled sentences.

. Methodology

In this section, we provide an in-depth overview of our proposed
odel. Our model is built on an observation that confusion between

wo characters can come from both their phonetics and shape. Liu et al.
2010) have shown that over a third of spelling errors are due to both
ronunciation and shape. As shown in Fig. 2, ‘‘ ’’

and ‘‘ ’’ not only have similar pronunciations
but also the parts of ‘‘ ’’ are the same. Common late fusion meth-
ds (Cheng et al., 2020; Xu et al., 2021) cannot capture these rela-
ionships as they integrate the result of encoding phonetics and shape
s independent modules. Intuitively, by combining phonetic and shape
nformation into a single input sequence, the attention mechanism can
imultaneously perceive the sound and shape proximity to make a
ore accurate judgment. It makes it easier for the model to learn such

onfusing information.

.1. Model architecture

Our model utilizes semantic, phonetic, and graphic information
o distinguish the similarities between Chinese characters and correct
pelling errors. As shown in Fig. 2, we first employ a BERT-based se-
antic encoder and a Transformer-based confusion encoder to capture

aluable contextual, phonetic, and graphic information. The outputs
f the two encoders are combined using a fusion module to gener-
te context-aware representations of character confusion. Finally, the
utput layer predicts the probability of correction.
186
Semantic encoder. Judging the correctness of typos in text involves
considering the difference in semantics between similar phonetics or
glyphs. To accurately identify spelling errors, it is crucial to assess the
fluency of the current character in the context of the sentence. Context-
free static word embedding is unable to take into account the current
textual information, so it is a better choice to use a context-dependent
dynamic pre-training model.

We adopt BERT (Devlin et al., 2019) to develop the semantic
encoder. BERT provides rich contextual word representation with unsu-
pervised pre-training on large corpora. Note that, as we show in Fig. 2,
using only the PTM-based semantic encoder, the model tends to modify
spelling errors into more frequent words.

Confusion encoder. To effectively integrate phonetic and glyph infor-
mation, we utilize the Transformer encoder, encompassing both a
character-level encoder and a sequence-level encoder, forming a hier-
archical relationship as depicted in Fig. 2. The input for the confusion
encoder is a rich information sequence of the character, which is
composed of three key elements. The initial element is the Chinese
character itself, followed by the constituent components of the word,2
and finally the pinyin.3 To establish a unique identity for glyphs and
phonemes, we also incorporate type encodings. Specifically, the type
index for the glyph segment is set to 0, while for the phonetic segment,
it is designated as 1. Both the type encodings and the input sequence
are transformed into vectors through random initialization.

In contrast to the Transformer encoder, which employs a self-
attention mechanism, we adopt a local attention mechanism within the
character-level confusing information encoder. As depicted in Fig. 2,
we illustrate a scenario where we calculate the attention scores for all
the pinyin and Chinese character components of the input character
‘‘ ’’ (xiàng, elephant). In contrast to self-attention, where the input
character itself often receives the highest attention score, we mask itself
when calculating the attention score. This clever adjustment makes the
local attention mechanism more adept at directing the model’s focus
toward pronunciation or glyph information, which frequently underlies
the perplexing relationships leading to spelling errors.

By utilizing the transformer encoder and a local attention mecha-
nism, the model adeptly captures confusion information between char-
acters. For instance, the characters ‘‘ ’’ ( ) and ‘‘ ’’
( ) share the same components, including ‘‘ ’’, ‘‘ ’’,
‘‘ ’’, ‘‘ ’’, and the identical pinyin ‘‘ ’’. These relationships are
effectively captured by the model.

Fusion module. With previously mentioned semantic and confusion
encoders, we get the representation vectors 𝐇𝑠 and 𝐇𝑐 to encode
ontextual information and confusion information. We develop a se-
ective fusion module to integrate these two embeddings to predict the
orrect Chinese characters. A selective gate unit is employed to mix
emantic information and confusing relationships. Parameters of the
ating mechanism are computed by a fully connected layer followed by
sigmoid function. Following the method of ReaLiSe (Xu et al., 2021),

he inputs include the character representation from the confusion
ncoder and the mean of the semantic encoder output 𝐇𝑠 to get the

overall semantic information of the input text. Formally, we denote the
parameters of the gating unit for contextual and confusing information
as 𝑔𝑠 and 𝑔𝑐 . The mixed representation is computed as follows:

ℎ
𝑠
= 1

𝑁

𝑁
∑

𝑖=1
ℎ𝑠𝑖 (1)

𝑔𝑠𝑖 = 𝜎(𝐖𝑠 ⋅ [ℎ𝑠𝑖 , ℎ
𝑐
𝑖 , ℎ

𝑠
] + 𝑏𝑠) (2)

𝑔𝑐𝑖 = 𝜎(𝐖𝑐 ⋅ [ℎ𝑠𝑖 , ℎ
𝑐
𝑖 , ℎ

𝑠
] + 𝑏𝑐 ) (3)

ℎ̃𝑖 = 𝑔𝑠𝑖 ⋅ ℎ
𝑠
𝑖 + 𝑔𝑐𝑖 ⋅ ℎ

𝑐
𝑖 (4)

2 https://github.com/kfcd/chaizi
3 https://github.com/hotoo/pinyin

https://github.com/kfcd/chaizi
https://github.com/hotoo/pinyin
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Fig. 2. The architecture overview of our proposed model. The semantic/confusion encoders are used to capture the contextual/phonetic and graphic information. We adopt a local
ttention mechanism within the confusion encoder to encode the phonetic and glyph information. And a gating mechanism is employed to selectively integrate the information
rom two encoders.
here 𝐖𝑠, 𝐖𝑐 , 𝑏𝑠, 𝑏𝑐 are learnable parameters, 𝜎 is the sigmoid
function, and [⋅] means the concatenation of vectors. Then, at the
sentence level, Transformer is applied to fully learn the semantic and
confusing information. The mixed representations of the whole sen-
tence are packed together into 𝐇0 = [ℎ̃1, ℎ̃2,… , ℎ̃𝑁 ], and the probability
distribution �̂�𝑖 of what the 𝑖th character should be represented as:

𝐇𝑙 = 𝐓𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫𝑙(𝐇𝑙−1), 𝑙 ∈ [1, 𝐿′] (5)

�̂�𝑖 = 𝐬𝐨𝐟𝐭𝐦𝐚𝐱(𝐖𝑜ℎ𝑖 + 𝑏𝑜), ℎ𝑖 ∈ 𝐇𝐿′ (6)

where 𝐿′ is the number of Transformer layers, 𝐖𝑜 and 𝑏𝑜 are learnable
parameters.

4. Experiments

In this section, we introduce experimental details and results on
the SIGHAN benchmarks (Wu et al., 2013; Yu and Li, 2014; Tseng
et al., 2015) and our newly constructed YACSC evaluation set. Then, we
conduct detailed analyses, follow-up experiments and ablation studies
to verify the contribution of our method.

4.1. Datasets and baseline methods

Train data. We use the same training data following previous works
(Xu et al., 2021; Zhang et al., 2020), including the SIGHAN training
samples (Wu et al., 2013; Yu and Li, 2014; Tseng et al., 2015) and
the pseudo training samples automatically generated by OCR-based and
ASR-based methods (Wang et al., 2018). Statistics of the datasets are
shown in Table 3. All the training data are merged to train our proposed
model and other baseline models.

Test data. We evaluate our model on the SIGHAN benchmarks (Wu
et al., 2013; Yu and Li, 2014; Tseng et al., 2015) and our newly
constructed YACSC evaluation set. Originally, the SIGHAN datasets are
in the traditional Chinese. Most prior studies (Wang et al., 2019; Zhang
et al., 2020; Cheng et al., 2020; Xu et al., 2021) are based on the
converted simplified Chinese version by openCC.4 However, the conver-
sion to simplified Chinese introduces a lot of noise. Multiple traditional

4 https://github.com/BYVoid/OpenCC
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Table 3
Statistics of the used public training datasets.

Training set # Sent Avg. length # Errors

SIGHAN13 700 41.8 343
SIGHAN14 3437 49.6 5122
SIGHAN15 2338 31.3 3037
Wang271K 271,329 42.6 381,962

Total 277,804 42.6 390,464

Chinese characters may correspond to a single simplified Chinese char-
acter after conversion. Thus, a confusion pair may become invalid after
simplification. For example, as shown in Table 4, ‘‘ (review)’’ and
‘‘ (review)’’ could have constituted an error pair ‘‘ - ’’, but both
‘‘ ’’ and ‘‘ ’’ are converted to ‘‘ ’’ in Simplified Chinese. And we also
observed that there are some unreasonable annotations in the SIGHAN
benchmarks. Some of the main reasons include similarity in sound
( ), similarity in form ( ), and grammatical
errors ( ). These issues undermine the reliability of
model evaluation, to a certain extent.

To address the above-mentioned issues in the SIGHAN test sets,
including mislabeling and omission, etc., we conduct a revision to
improve the confidence of evaluation results. The before-and-after re-
vision statistics of the SIGHAN test sets are shown in Table 5. From the
statistics, we can see that, as we mentioned above, the original SIGAHN
test sets have a significant number of unmarked errors. So, the results
tested on the original benchmark inevitably have some distortion.

We evaluate our model on the original/revised SIGHAN test sets and
YACSC test sets. The test sets are used separately to evaluate the model
performance.

Metrics. Results are reported at the detection level and the correction
level. At the detection level, a sentence is considered to be correct
if and only if all the spelling errors are detected successfully. At the
correction level, the model must not only detect but also correct all the
erroneous characters to the right ones. We report the precision, recall,
and F1 scores on both levels. Note that Xu et al. (2021) proposed to

’’, ‘‘ ’’, and ‘‘ ’’ characters
remove all the detected and corrected ‘‘

https://github.com/BYVoid/OpenCC
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Table 4
A bad case in SIGHAN15 test set. ‘‘ ’’ and ‘‘ ’’ are both converted to ‘‘ ’’.
Table 5
Statistics of SIGHAN test sets before and after revision.

Original # Sent # Erroneous sent # Errors

SIGHAN13 1000 1000 1224
SIGHAN14 1062 531 771
SIGHAN15 1100 550 703

Revised # Sent # Erroneous sent # Errors

SIGHAN13 1000 977 1483
SIGHAN14 1062 602 932
SIGHAN15 1100 618 858

from the model output on SIGHAN13 test set because of the poor
annotation quality. However, we refrain from this process to ensure
a fair comparison of model performance on the original and revised
SIGHAN test sets.

Baseline methods. To evaluate the performance of our method, we
elect several advanced strong baseline methods: BERT (Devlin et al.,

2019) is to directly fine-tune the PTM with the training data. Re-
aLiSe (Xu et al., 2021) captures and mixes multimodal knowledge
to improve CSC performance, which is the previous state-of-the-art
method on SIGHAN benchmarks.

4.2. Experimental setup

Our method is implemented using PyTorch framework (Paszke
et al., 2019) with the Transformer library (Wolf et al., 2020). Mi-
crosoft’s deepspeed (Rasley et al., 2020) is employed for parallel
training and mixed-precision acceleration. We chose the whole-word-
masking pretraining model chinese-bert-wwm-ext (Cui et al., 2021)
as the backbone of the semantic encoder. For the confusion encoder,
a two layers transformer encoder with two attention heads is ap-
plied for character-level and a four layers transformer encoder with
eight attention heads for sentence-level. The fusion module has two
transformer layers with 8 attention heads. All the embeddings and
hidden states have a dimension of 768. We train our model with
the AdamW (Loshchilov and Hutter, 2017) optimizer for ten epochs.
The learning rate is set to 1e−5, the batch size is set to 96, and the
accumulation step is set to 2. We would shuffle all the training data
before training.

4.3. Main results

Table 6 shows the evaluation results at detection and correction
levels on the original/revised SIGHAN test sets and our constructed
YACSC evaluation sets.

When comparing the performance of models on the original and
revised SIGHAN test sets, all models exhibit an average drop of 4.26%
F1 score on the correction level. This demonstrates that the revised
SIGHAN test sets are more challenging than the original version, high-
lighting the unreliability of the original SIGHAN test sets.

Our proposed model shows competitive ability against the base-
188

line models under ideal conditions on the revised SIGHAN test sets
and YACSC_w/o_GE test set. Moreover, on the real-world scenario
evaluation set YACSC_w/_GE that we proposed, our model performs
significantly better than BERT and ReaLiSe (Xu et al., 2021). By inte-
grating the rich information of Chinese characters instead of just using
context information, our model demonstrates excellent performance
with a large margin against BERT. By jointly encoding character com-
ponents and pinyin using the Transformer encoder, the experimental
results demonstrate that our method utilizes the phonetic and graphic
proximity information more effectively than ReaLiSe (Xu et al., 2021).

The results in the last two sections of Table 6 show that the
performance of models on the YACSC-w/o_GE set is significantly higher
than on the YACSC_w/_GE set. This highlights the difficulty of the CSC
task in real-world scenarios and suggests that the old ideal building
benchmarks may not be suitable for these scenarios. At the same
time, the performance of our proposed model drops the letter than
ReaLiSe (Xu et al., 2021) when faced with scenes with grammatical
errors and achieves the best results, proving better robustness and
capacity of our method in this more realistic evaluation scenario.

As the Spelling Check system is commonly used in conjunction
with a Grammar Error Correction (GEC) model in the text correction
process, we further investigate different strategies for enhancing the
performance of text correction on the YACSC_w/_GE evaluation set.
Given that GEC models (Omelianchuk et al., 2020; Liu et al., 2021;
Yang et al., 2022; Bryant et al., 2023) now use pre-trained language
models like BERT as the semantic information extractor, spelling errors
in texts will bring significant noise to the output of the pre-trained
language model, which will negatively impact the subsequent grammar
error correction. We believe that correcting spelling errors in sentences
before they are sent to the GEC model can significantly improve the
text correction performance. Table 7 shows the comparison of differ-
ent strategies of text correction. The results show that using a CSC
model for preprocessing achieves better performance overall, which
also proves that a CSC dataset without pre-modification of its original
input is more suitable in real-world scenarios. Moreover, our method’s
superiority in handling real-world scenarios is demonstrated by the
significant improvement in the F0.5 score achieved through the use of
our model for preprocessing.

4.4. Ablation study

We analyze the effect of several fusion strategies, including the
semantic encoder, the concatenation of the semantic encoder and con-
fusion encoder, the sum of the semantic encoder and confusion encoder,
and the gating mechanism. The results are illustrated in Table 8,
proving that the scheme using the gating mechanism is the optimal
fusion method. Compared with the strategy using only the semantic
encoder, the gating mechanism also shows certain advantages, which
also reflects the effectiveness of joint modeling with confusing informa-

tion.
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Table 6
The performance of our model and all baseline models on the original/revised SIGHAN test sets and our newly constructed YACSC evaluation set. We
show the 𝛥F1 score on the correction level for the original and revised SIGHAN test sets, YACSC-w/o_GE and YACSC-w/_GE, respectively.

Dataset Method Detection level Correction level

Precision Recall F1 Precision Recall F1

SIGHAN13
BERT 77.75 74.15 75.91 76.78 73.22 74.96

ReaLiSe 78.77 72.61 75.56 76.42 70.44 73.31
Ours 75.90 69.72 72.67 75.22 69.10 72.03

SIGHAN14
BERT 65.03 68.65 66.79 63.75 67.31 65.48

ReaLiSe 62.86 76.69 65.19 61.43 66.15 63.70
Ours 67.12 66.73 66.92 66.34 65.96 66.15

SIGHAN15
BERT 76.14 80.22 78.13 74.04 78.00 75.97

ReaLiSe 76.08 81.15 78.53 74.52 79.48 76.92
Ours 76.65 77.08 76.87 76.10 76.52 76.31

SIGHAN13_REVISED
BERT 72.57 68.78 70.63 71.06 67.35 69.15 (↓ 5.81)

ReaLiSe 74.86 70.73 72.74 71.94 67.96 69.89 (↓ 3.42)
Ours 74.44 68.27 71.22 73.21 67.14 70.04 (↓ 1.99)

SIGHAN14_REVISED
BERT 64.56 59.30 61.82 62.57 57.48 59.91 (↓ 5.57)

ReaLiSe 65.59 60.80 63.10 63.62 58.97 61.21 (↓ 2.49)
Ours 67.18 58.13 62.33 66.03 57.14 61.26 (↓ 4.89)

SIGHAN15_REVISED
BERT 75.44 69.58 72.39 73.16 67.48 70.20 (↓ 5.77)

ReaLiSe 75.78 70.87 73.24 74.39 69.58 71.91 (↓ 5.01)
Ours 77.72 68.28 72.70 76.98 67.64 72.01 (↓ 4.30)

YACSC_w/o_GE
BERT 63.67 41.10 49.95 56.38 36.39 44.23

ReaLiSe 67.93 47.69 56.04 60.34 42.35 49.77
Ours 71.62 42.35 53.23 68.30 40.39 50.76

YACSC_w/_GE
BERT 56.43 38.20 45.56 49.59 33.57 40.04 (↓ 4.19)

ReaLiSe 57.71 43.14 49.37 51.31 38.35 43.90 (↓ 5.87)
Ours 63.94 39.92 49.15 61.06 38.12 46.93 (↓ 3.83)
Table 7
Results of different strategies for text correction. GEC-only indicates that we
only use the GEC system to correct errors. The third and fourth rows refer
to a GEC system followed by a CSC system for error correction, and the CSC
model here is our proposed model or ReaLiSe, and the GEC model is GECToR
(Omelianchuk et al., 2020). The fifth and sixth rows mean the opposite.
Strategy Precision Recall F0.5

GEC-only 31.48 16.00 26.38

GEC→ReaLiSe 32.90 19.89 29.09
GEC→Ours 34.00 19.77 29.72

ReaLiSe→GEC 35.08 21.23 31.03
Ours→GEC 36.76 21.44 32.16

5. Related work

The SIGHAN13, 14, and 15 benchmarks (Wu et al., 2013; Yu et al.,
2014; Tseng et al., 2015) are predominant in the field, exclusively
focusing on spelling errors while excluding other syntactical inaccu-
racies or inappropriate co-occurrences. Wang et al. (2018) addressed
the scarcity of training data by generating synthetic datasets through
automated methods. A significant portion of recent data-driven re-
search utilizes the SIGHAN datasets and the data from Wang et al.
(2018) as training material (Zhang et al., 2020; Cheng et al., 2020;
Xu et al., 2021; Li et al., 2022), showcasing the positive impact of ex-
panded data size on Chinese Spelling Correction (CSC) performance. Hu
et al. (2022) introduced CSCD-IME, a dataset tailored for CSC errors
stemming from pinyin Input Method Editors (IME), and proposed a
method for pseudo-data generation by simulating pinyin IME inputs.
This approach is specifically designed for CSC in the native Chinese
language domain. Additionally, Jiang et al. (2022) presented MCSCSet,
a comprehensive dataset annotated by experts for CSC within the
medical domain.

Historically, CSC relied on unsupervised language models (Liu et al.,
2013; Yu and Li, 2014), rule-based techniques (Chang et al., 2015; Chu
and Lin, 2015) and conventional machine learning approaches (Wang
and Liao, 2015; Xiong et al., 2015). The advent of deep learning in
Natural Language Processing (NLP) has led to significant advancements
189
in CSC through neural-based methodologies. Wang et al. (2018) utilized
discriminative sequence tagging and a Bi-LSTM network for CSC tasks.
Treating CSC as a translation task within the same language, Wang
et al. (2019) applied the seq2seq model for correction purposes. The
emergence of pre-trained language models (PLMs) like BERT (Devlin
et al., 2019), has established PLMs as encoders as a prevalent strategy
in CSC. FASPell, a model proposed by Hong et al. (2019) combines a
DAE-Decoder structure with a BERT-based encoder. Zhang et al. (2020)
introduced a Bi-GRU detection network to produce masking vectors for
a BERT-based correction network, while Lin et al. (2022) proposed a
reverse contrastive learning approach for CSC.

The integration of external character similarity knowledge has re-
cently garnered attention. This knowledge is often structured into
confusion sets containing pairs of similar characters. Yu and Li (2014)
initially utilized manually created confusion sets to identify potential
errors. Wang et al. (2019) incorporated a pointer network (Vinyals
et al., 2015) to directly copy characters from the confusion set to the
target sentence. Cheng et al. (2020) introduced SpellGCN, a model
that utilizes Graph Convolution Networks (Kipf and Welling, 2017) to
represent pronunciation and shape similarities within the confusion
set. Moving away from static confusion sets, Nguyen et al. (2021)
applied TreeLSTM (Tai et al., 2015; Zhu et al., 2015) to filter correction
candidates based on learned confusion relations, while Xu et al. (2021)
explored multimodal knowledge to discern subtle similarities between
Chinese characters.

Despite the impressive capabilities of Large Language Models
(LLMs) like GPT-3 in various NLP tasks, Li et al. (2023) conducted
an in-depth analysis of LLMs’ performance on CSC tasks, uncovering
challenges and areas for improvement in their application to CSC.

6. Conclusion

In this paper, We propose a new paradigm for the Chinese Spelling
Check (CSC) task, which conducts spell checking directly in scenarios
where grammatical errors exist. This paradigm is more in line with
the demands of real-world scenarios. We also introduce YACSC, a
comprehensive CSC evaluation set comprising 2550 sentences from
Chinese as a Second Language (CSL) learners. YACSC offers a more
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Table 8
The ablation results for fusion strategies (%). Concatenation means the concatenation of the semantic encoder and confusion encoder. Sum
denotes the sum of the semantic encoder and confusion encoder.

Dataset Fusion strategy Detection level Correction level

Precision Recall F1 Precision Recall F1

YACSC_w/o_GE

Semantic encoder 63.02 40.24 49.11 57.99 37.02 45.19
Sum 68.49 42.27 52.28 64.55 39.84 49.27
Concatenation 58.51 35.84 44.46 54.16 33.17 41.15
Gating mechanism 71.62 42.35 53.23 68.30 40.39 50.76

YACSC_w/_GE

Semantic encoder 53.44 38.43 44.71 48.09 34.59 40.24
Sum 61.96 39.22 48.03 57.62 36.47 44.67
Concatenation 50.29 34.27 40.76 45.68 31.14 37.03
Gating mechanism 63.94 39.92 49.15 61.06 38.12 46.93
dependable evaluation compared to existing benchmarks, thanks to two
key features: (1) It highlights spelling errors in the original sentences
while preserving any grammatical mistakes, ensuring alignment with
real-world use cases. (2) It focuses on a simplified corpus from Chinese
language learners, minimizing the noise from simplified-traditional
Chinese conversions. Additionally, we provide a subset with corrected
grammatical errors, akin to the SIGHAN benchmark, to assess how
current models fare in optimal conditions. We also propose a new
CSC model that effectively integrates contextual, phonetic, and graphic
information for error detection and correction. Our comprehensive
experiments and analyses demonstrate that our model not only excels
in ideal conditions but also exhibits remarkable resilience in practical
settings. The dataset and evaluation scripts are accessible at https:
//github.com/blcuicall/yacsc.
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Appendix. Consonants proximity table and vowels proximity table

We synthesize the phonetic proximity types and summarize them in the following consonant proximity phonetics table. As illustrated in Fig. A.1
the consonants marked as 1 in the table have a close relationship, and a null value indicates dissimilarity.

Fig. A.1. Consonants Proximity Table. The consonants marked as 1 in the table have a close relationship, and a null value indicates dissimilarity.

During the labeling process, the phonemic variants of the vowels in the finals need to be considered. Based on the phonetic error rules of the
finals in Song (2000), we have summed up the vowels proximity table, as shown in Fig. A.2.

Fig. A.2. Vowels Proximity Table. There are similarity between the bolded vowel and the vowels following it.
191
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